Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/18779
Title: | Development of monoclonal anti-PDGF-CC antibodies as tools for investigating human tissue expression and for blocking PDGF-CC induced PDGFRα signalling in vivo. | Austin Authors: | Li, Hong;Zeitelhofer, Manuel;Nilsson, Ingrid;Liu, Xicong;Allan, Laura C ;Gloria, Benjamin;Perani, Angelo;Murone, Carmel ;Catimel, Bruno;Neville, A Munro;Scott, Fiona E;Scott, Andrew M ;Eriksson, Ulf | Affiliation: | Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden Ludwig Institute for Cancer Research, Austin Health, Heidelberg, Victoria, Australia Ludwig Institute for Cancer Research, New York, New York, United States of America Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia School of Cancer Medicine, La Trobe University, Melbourne, Australia |
Issue Date: | 27-Jul-2018 | Date: | 2018-07-27 | Publication information: | PLoS One 2018; 13(7): e0201089 | Abstract: | PDGF-CC is a member of the platelet-derived growth factor (PDGF) family that stimulates PDGFRα phosphorylation and thereby activates intracellular signalling events essential for development but also in cancer, fibrosis and neuropathologies involving blood-brain barrier (BBB) disruption. In order to elucidate the biological and pathological role(s) of PDGF-CC signalling, we have generated high affinity neutralizing monoclonal antibodies (mAbs) recognizing human PDGF-CC. We determined the complementarity determining regions (CDRs) of the selected clones, and mapped the binding epitope for clone 6B3. Using the monoclonal 6B3, we determined the expression pattern for PDGF-CC in different human primary tumours and control tissues, and explored its ability to neutralize PDGF-CC-induced phosphorylation of PDGFRα. In addition, we showed that PDGF-CC induced disruption of the blood-retinal barrier (BRB) was significantly reduced upon intraperitoneal administration of a chimeric anti-PDGF-CC antibody. In summary, we report on high affinity monoclonal antibodies against PDGF-CC that have therapeutic efficacy in vivo. | URI: | https://ahro.austin.org.au/austinjspui/handle/1/18779 | DOI: | 10.1371/journal.pone.0201089 | ORCID: | 0000-0002-4439-3980 | Journal: | PLoS One | PubMed URL: | 30052660 | Type: | Journal Article |
Appears in Collections: | Journal articles |
Show full item record
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.