Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/9478
Title: | ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y11 receptor signaling. | Austin Authors: | Schnurr, Max;Toy, Tracey;Stoitzner, Patrizia;Cameron, Paul;Shin, Amanda;Beecroft, Tina;Davis, Ian D;Cebon, Jonathan S ;Maraskovsky, Eugene | Affiliation: | max.schnurr@ludwig.edu.au Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Austin, Australia |
Issue Date: | 20-Mar-2003 | Publication information: | Blood 2003; 102(2): 613-20 | Abstract: | Dendritic cells (DCs) are specialized antigen-presenting cells residing in tissues, from which they take up antigen. Activated DCs migrate through chemokine gradients from sites of inflammation to lymph nodes to stimulate T cells. At sites of inflammation, nucleotides, such as adenosine triphosphate (ATP), are released by activated or dying cells and can function as signaling molecules through P2 receptors (P2Rs). We investigated P2R expression in different DC populations and the effect of nucleotides on chemokine-directed migration. Exposure of monocyte-derived DCs (MoDCs) and CD1a+ dermal DCs to gradients of ATP inhibited their migratory capacity in a dose-dependent manner. Studies using P2R agonists and antagonists implicated signaling through the P2Y11R. On maturation, MoDCs down-regulated P2Y11R expression and were less sensitive to ATP-mediated inhibition of migration. In contrast, ATP did not inhibit the migration of CD1c+ peripheral blood (PB) DCs or interleukin-3 receptor-positive (IL-3R+) plasmacytoid DCs. Although all 4 DC populations expressed mRNA for P2Y11R, calcium-flux studies showed that blood DC types were unresponsive to P2Y11R agonists. In conclusion, DCs use distinct subtypes of P2R. The formation of ATP gradients at sites of inflammation may transiently inhibit the migration of local DCs, thus prolonging the time of antigen encounter. P2R inhibition may represent a new strategy to improve the migration of antigen-loaded DCs from the vaccination site to lymph nodes. | Gov't Doc #: | 12649135 | URI: | https://ahro.austin.org.au/austinjspui/handle/1/9478 | DOI: | 10.1182/blood-2002-12-3745 | Journal: | Blood | URL: | https://pubmed.ncbi.nlm.nih.gov/12649135 | Type: | Journal Article | Subjects: | Adenosine Triphosphate.pharmacology Antigens, CD1.analysis Calcium Signaling.drug effects Chemotaxis.drug effects Dendritic Cells.classification.drug effects.physiology Depression, Chemical Dermis.cytology Dinoprostone.pharmacology Dose-Response Relationship, Drug Drug Resistance Glycoproteins.analysis Humans Inflammation Interferon-alpha.pharmacology Melanoma.blood.drug therapy.immunology Membrane Proteins.pharmacology.therapeutic use Monocytes.cytology Phosphatidylinositol Diacylglycerol-Lyase RNA, Messenger.biosynthesis.genetics Receptors, Interleukin-3.analysis Receptors, Purinergic P2.biosynthesis.genetics.physiology Signal Transduction.drug effects Tumor Necrosis Factor-alpha.pharmacology Type C Phospholipases.physiology |
Appears in Collections: | Journal articles |
Show full item record
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.