Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/33343
Title: | Author Correction: DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets. | Austin Authors: | Raies, Arwa;Tulodziecka, Ewa;Stainer, James;Middleton, Lawrence;Dhindsa, Ryan S;Hill, Pamela;Engkvist, Ola;Harper, Andrew R;Petrovski, Slavé;Vitsios, Dimitrios | Affiliation: | Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK. Emerging Innovations, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA. Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden. Medicine (University of Melbourne) |
Issue Date: | 11-Jul-2023 | Date: | 2023 | Publication information: | Communications Biology 2023-07-11; 6(1) | URI: | https://ahro.austin.org.au/austinjspui/handle/1/33343 | DOI: | 10.1038/s42003-023-05086-5 | ORCID: | 0000-0003-3952-7363 0000-0002-8965-0813 0000-0003-4970-6461 0000-0002-8939-5445 |
Journal: | Communications Biology | Start page: | 710 | PubMed URL: | 37433831 | ISSN: | 2399-3642 | Type: | Journal Article |
Appears in Collections: | Journal articles |
Show full item record
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.