Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/33343
Title: Author Correction: DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets.
Austin Authors: Raies, Arwa;Tulodziecka, Ewa;Stainer, James;Middleton, Lawrence;Dhindsa, Ryan S;Hill, Pamela;Engkvist, Ola;Harper, Andrew R;Petrovski, Slavé;Vitsios, Dimitrios
Affiliation: Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
Emerging Innovations, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA.
Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
Medicine (University of Melbourne)
Issue Date: 11-Jul-2023
Date: 2023
Publication information: Communications Biology 2023-07-11; 6(1)
URI: https://ahro.austin.org.au/austinjspui/handle/1/33343
DOI: 10.1038/s42003-023-05086-5
ORCID: 0000-0003-3952-7363
0000-0002-8965-0813
0000-0003-4970-6461
0000-0002-8939-5445
Journal: Communications Biology
Start page: 710
PubMed URL: 37433831
ISSN: 2399-3642
Type: Journal Article
Appears in Collections:Journal articles

Show full item record

Page view(s)

16
checked on Nov 25, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.