Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/33343
Title: Author Correction: DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets.
Austin Authors: Raies, Arwa;Tulodziecka, Ewa;Stainer, James;Middleton, Lawrence;Dhindsa, Ryan S;Hill, Pamela;Engkvist, Ola;Harper, Andrew R;Petrovski, Slavé;Vitsios, Dimitrios
Affiliation: Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
Emerging Innovations, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA.
Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
Medicine (University of Melbourne)
Issue Date: 11-Jul-2023
Date: 2023
Publication information: Communications Biology 2023-07-11; 6(1)
URI: https://ahro.austin.org.au/austinjspui/handle/1/33343
DOI: 10.1038/s42003-023-05086-5
ORCID: 0000-0003-3952-7363
0000-0002-8965-0813
0000-0003-4970-6461
0000-0002-8939-5445
Journal: Communications Biology
Start page: 710
PubMed URL: 37433831
ISSN: 2399-3642
Type: Journal Article
Appears in Collections:Journal articles

Show full item record

Page view(s)

8
checked on Apr 15, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.