Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/32341
Title: Development of Traumatic Brain Injury Associated Intracranial Hypertension Prediction Algorithms: A Narrative Review.
Austin Authors: McNamara, Robert;Meka, Shiv;Anstey, James;Fatovich, Daniel;Haseler, Luke;Jeffcote, Toby;Udy, Andrew;Bellomo, Rinaldo ;Fitzgerald, Melinda
Affiliation: Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.
Data Innovation Laboratory, Western Australian Department of Health, Perth, Western Australia, Australia.
Department of Intensive Care, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.
Department of Emergency Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.
Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.
Department of Intensive Care, Alfred Health, Melbourne, Victoria, Australia.
Department of Intensive Care, Alfred Health, Melbourne, Victoria, Australia.
Department of Intensive Care, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.
Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.
Data Analytics Research and Evaluation (DARE) Centre
Intensive Care
Issue Date: Mar-2023
Date: 2022
Publication information: Journal of neurotrauma 2023; 40(5-6):416-434.
Abstract: Traumatic intracranial hypertension (tIH) is a common and potentially lethal complication of moderate to severe traumatic brain injury (m-sTBI). It often develops with little warning and is managed reactively with the tiered application of intracranial pressure (ICP)-lowering interventions administered in response to an ICP rising above a set threshold. For over 45 years, a variety of research groups have worked toward the development of technology to allow for the preemptive management of tIH in the hope of improving patient outcomes. In 2022, the first operationalizable tIH prediction system became a reality. With such a system, ICP lowering interventions could be administered prior to the rise in ICP, thus protecting the patient from potentially damaging tIH episodes and limiting the overall ICP burden experienced. In this review, we discuss related approaches to ICP forecasting and IH prediction algorithms, which collectively provide the foundation for the successful development of an operational tIH prediction system. We also discuss operationalization and the statistical assessment of tIH algorithms. This review will be of relevance to clinicians and researchers interested in development of this technology as well as those with a general interest in the bedside application of machine learning (ML) technology.
URI: https://ahro.austin.org.au/austinjspui/handle/1/32341
DOI: 10.1089/neu.2022.0201
ORCID: 
Journal: Journal of neurotrauma
Start page: 416
End page: 434
PubMed URL: 36205570
ISSN: 1557-9042
Type: Journal Article
Subjects: intracranial hypertension
intracranial hypertension prediction
intracranial pressure forecasting
machine learning
Brain Injuries, Traumatic/complications
Brain Injuries, Traumatic/diagnosis
Intracranial Hypertension/etiology
Intracranial Hypertension/complications
Intracranial Pressure/physiology
Appears in Collections:Journal articles

Show full item record

Page view(s)

50
checked on Dec 24, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.