Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/17372
Title: Condensin, master organizer of the genome.
Austin Authors: Kalitsis, Paul;Zhang, Tao;Marshall, Kathryn M;Nielsen, Christian F;Hudson, Damien F
Affiliation: Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
Issue Date: Mar-2017
metadata.dc.date: 2017
Publication information: Chromosome research 2017; 25(1): 61-76
Abstract: A fundamental requirement in nature is for a cell to correctly package and divide its replicated genome. Condensin is a mechanical multisubunit complex critical to this process. Condensin uses ATP to power conformational changes in DNA to enable to correct DNA compaction, organization, and segregation of DNA from the simplest bacteria to humans. The highly conserved nature of the condensin complex and the structural similarities it shares with the related cohesin complex have provided important clues as to how it functions in cells. The fundamental requirement for condensin in mitosis and meiosis is well established, yet the precise mechanism of action is still an open question. Mutation or removal of condensin subunits across a range of species disrupts orderly chromosome condensation leading to errors in chromosome segregation and likely death of the cell. There are divergences in function across species for condensin. Once considered to function solely in mitosis and meiosis, an accumulating body of evidence suggests that condensin has key roles in also regulating the interphase genome. This review will examine how condensin organizes our genomes, explain where and how it binds the genome at a mechanical level, and highlight controversies and future directions as the complex continues to fascinate and baffle biologists.
URI: http://ahro.austin.org.au/austinjspui/handle/1/17372
DOI: 10.1007/s10577-017-9553-0
PubMed URL: 28181049
Type: Journal Article
Subjects: Chromosome condensation
Chromosome segregation
Condensin
Genome
Appears in Collections:Journal articles

Show full item record

Page view(s)

2
checked on Dec 5, 2022

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.