Please use this identifier to cite or link to this item:
Title: Optimal reference region to measure longitudinal amyloid-β change with 18F-florbetaben PET
Austin Authors: Bullich, Santiago;Villemagne, Victor L ;Catafau, Ana M;Jovalekic, Aleksandar;Koglin, Norman;Rowe, Christopher C ;De Santi, Susan
Affiliation: Piramal Imaging GmbH, Berlin, Germany
Department of Molecular Imaging, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
Piramal Pharma Inc., Boston, Massachusetts
Issue Date: Aug-2017 2017-02-09
Publication information: Journal of Nuclear Medicine 2017; 58(8): 1300-1306
Abstract: Accurate measurement of changes in amyloid-β (Aβ) deposition over time is important in longitudinal studies, particularly in anti-Aβ therapeutic trials. To achieve this, the optimal reference region (RR) must be selected to reduce variance of Aβ PET measurements, allowing early detection of treatment efficacy. The aim of this study was to determine the RR that allows earlier detection of subtle Aβ changes using 18F-florbetaben PET. Methods: Forty-five patients with mild cognitive impairment (mean age ± SD, 72.69 ± 6.54 y; 29 men/16 women) who underwent up to 3 18F-florbetaben scans were included. Baseline scans were visually classified as high (Aβ+) or low (Aβ-) amyloid. Six cortical regions were quantified using a standardized region-of-interest atlas applied to the spatially normalized gray matter image obtained from segmentation of the baseline T1-weighted volumetric MRI. Four RRs (cerebellar gray matter [CGM], whole cerebellum [WCER], pons, and subcortical white matter [SWM]) were studied. The SUV ratio (SUVR) for each RR was calculated by dividing cortex activity by RR activity, with a composite SUVR averaged over 6 cortical regions. SUVR increase from baseline to 1 and 2 y, and percentage Aβ deposition per year, were assessed across Aβ+ and Aβ- groups. Results: SUVs for any RR were not significantly different over time. Percentage Aβ accumulation per year derived from composite SUVR was 0.10 ± 1.72 (Aβ-) and 1.36 ± 1.98 (Aβ+) (P = 0.02) for CGM and 0.13 ± 1.47 and 1.32 ± 1.75 (P = 0.01), respectively, for WCER. Compared with baseline, the composite SUVR increase in Aβ+ scans was significantly larger than in Aβ- scans at 1 y (P = 0.04 [CGM]; P = 0.03 [WCER]) and 2 y (P = 0.02 [CGM]; P = 0.01 [WCER]) using these 2 RRs. Significant SUVR changes using the pons as the RR were detected only at 2 y (P = 0.46 [1 y], P = 0.001 [2 y]). SUVR using the SWM as the RR showed no significant differences at either follow-up (P = 0.39 [1 y], P = 0.09 [2 y]). Conclusion: RR selection influences reliable early measurement of Aβ changes over time. Compared with SWM and pons, which do not fulfil the RR requirements and have limited sensitivity to detect Aβ changes, cerebellar RRs are recommended for 18F-florbetaben PET because they allow earlier detection of Aβ accumulation.
DOI: 10.2967/jnumed.116.187351
ORCID: 0000-0003-3910-2453
Journal: Journal of Nuclear Medicine
PubMed URL:
Type: Journal Article
Subjects: Amyloid beta
Florbetaben PET
Reference region
Appears in Collections:Journal articles

Show full item record

Page view(s)

checked on Jan 27, 2023

Google ScholarTM


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.