Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/9372
Title: Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss.
Austin Authors: Duan, Yunbo;Turner, C H;Kim, B T;Seeman, Ego 
Affiliation: Department of Endocrinology, Austin and Repatriation Medical Center, University of Melbourne, Heidelberg, Australia
Issue Date: 1-Dec-2001
Publication information: Journal of Bone and Mineral Research : the Official Journal of the American Society For Bone and Mineral Research; 16(12): 2267-75
Abstract: Spine fractures usually occur less commonly in men than in women. To identify the structural basis for this gender difference in vertebral fragility, we studied 1013 healthy subjects (327 men and 686 women) and 76 patients with spine fractures (26 men and 50 women). Bone mineral content (BMC), cross-sectional area (CSA), and volumetric bone mineral density (vBMD) of the third lumbar vertebral body (L3) were measured by posteroanterior (PA) and lateral scanning using dual-energy X-ray absorptiometry (DXA). In this cross-sectional study, the diminution in peak vertebral body BMC from young adulthood to old age was less in men than in women (6% vs. 27%). This diminution was the net result of two opposing changes occurring concurrently throughout adult life: the removal of bone adjacent to marrow on the inner (endosteal) surface by bone resorption and the deposition of bone on the outer (periosteal) surface by bone formation. For L3, we estimated that men resorbed 3.7 g and deposited 3.1 g, producing a net loss of 0.6 g from young adulthood to old age and women resorbed 3.1 g and deposited only 1.2 g, producing a net loss of 1.9 g. Thus, based on our indirect estimates of periosteal gain and endosteal loss across life, the observed net diminution in BMC during aging was less in men than women because absolute periosteal bone formation was greater in men than women (3.1 g vs. 1.2 g) not because absolute bone resorption was less in men. On the contrary, the absolute amount of bone resorbed was greater in men than women (3.7 g vs. 3.1 g). Periosteal bone formation also increased vertebral body CSA 3-fold more in men than in women, distributing loads onto a larger CSA, so that the load imposed per unit CSA decreased twice as much in men than in women (13% vs. 5%). In men and women with spine fractures, CSA and vBMD were reduced relative to age-matched controls. However, vBMD was no different to the adjusted vBMD in age-matched controls derived assuming controls had no periosteal bone formation during aging. Thus, large amounts of bone are resorbed in men as well as in women, accounting for the age-related increase in spine fractures in both genders. Periosteal bone formation increases CSA and offsets bone loss in both genders but more greatly in men, accounting for the lower incidence of spine fractures in men than in women. We speculate that reduced periosteal bone formation, during growth or aging, may be in part responsible for both reduced vertebral size and reduced vBMD in men and women with spine fractures. Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than age-related bone loss.
Gov't Doc #: 11760841
URI: https://ahro.austin.org.au/austinjspui/handle/1/9372
DOI: 10.1359/jbmr.2001.16.12.2267
Journal: Journal of Bone and Mineral Research
URL: https://pubmed.ncbi.nlm.nih.gov/11760841
Type: Journal Article
Subjects: Adult
Aged
Aged, 80 and over
Bone Density
Female
Humans
Lumbar Vertebrae.pathology.physiopathology
Male
Middle Aged
Osteogenesis
Osteoporosis.pathology.physiopathology
Sex Characteristics
Spinal Fractures.pathology.physiopathology
Appears in Collections:Journal articles

Show full item record

Page view(s)

38
checked on Jan 11, 2025

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.