Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/34576
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaldoni, Pedro L-
dc.contributor.authorChen, Yunshun-
dc.contributor.authorHediyeh-Zadeh, Soroor-
dc.contributor.authorLiao, Yang-
dc.contributor.authorDong, Xueyi-
dc.contributor.authorRitchie, Matthew E-
dc.contributor.authorShi, Wei-
dc.contributor.authorSmyth, Gordon K-
dc.date2023-
dc.date.accessioned2023-12-18T00:04:45Z-
dc.date.available2023-12-18T00:04:45Z-
dc.date.issued2023-12-07-
dc.identifier.citationNucleic Acids Research 2023-12-07en_US
dc.identifier.issn1362-4962-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/34576-
dc.description.abstractDifferential expression analysis of RNA-seq is one of the most commonly performed bioinformatics analyses. Transcript-level quantifications are inherently more uncertain than gene-level read counts because of ambiguous assignment of sequence reads to transcripts. While sequence reads can usually be assigned unambiguously to a gene, reads are very often compatible with multiple transcripts for that gene, particularly for genes with many isoforms. Software tools designed for gene-level differential expression do not perform optimally on transcript counts because the read-to-transcript ambiguity (RTA) disrupts the mean-variance relationship normally observed for gene level RNA-seq data and interferes with the efficiency of the empirical Bayes dispersion estimation procedures. The pseudoaligners kallisto and Salmon provide bootstrap samples from which quantification uncertainty can be assessed. We show that the overdispersion arising from RTA can be elegantly estimated by fitting a quasi-Poisson model to the bootstrap counts for each transcript. The technical overdispersion arising from RTA can then be divided out of the transcript counts, leading to scaled counts that can be input for analysis by established gene-level software tools with full statistical efficiency. Comprehensive simulations and test data show that an edgeR analysis of the scaled counts is more powerful and efficient than previous differential transcript expression pipelines while providing correct control of the false discovery rate. Simulations explore a wide range of scenarios including the effects of paired vs single-end reads, different read lengths and different numbers of replicates.en_US
dc.language.isoeng-
dc.titleDividing out quantification uncertainty allows efficient assessment of differential transcript expression with edgeR.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleNucleic Acids Researchen_US
dc.identifier.affiliationBioinformatics Division, WEHI, Parkville, VIC 3052, Australia.;Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.en_US
dc.identifier.affiliationDepartment of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.;ACRF Cancer Biology and Stem Cells Division, WEHI, Parkville, VIC 3052, Australia.en_US
dc.identifier.affiliationBioinformatics Division, WEHI, Parkville, VIC 3052, Australia.;Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.en_US
dc.identifier.affiliationOlivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia.;School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia.en_US
dc.identifier.affiliationDepartment of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.;ACRF Cancer Biology and Stem Cells Division, WEHI, Parkville, VIC 3052, Australia.en_US
dc.identifier.affiliationEpigenetics and Development Division, WEHI, Parkville, VIC 3052, Australia.en_US
dc.identifier.affiliationOlivia Newton-John Cancer Research Instituteen_US
dc.identifier.affiliationBioinformatics Division, WEHI, Parkville, VIC 3052, Australia.;School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia.en_US
dc.identifier.doi10.1093/nar/gkad1167en_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0002-9510-8326en_US
dc.identifier.orcid0000-0003-4911-5653en_US
dc.identifier.orcid0000-0001-7513-6779en_US
dc.identifier.orcid0000-0002-9746-2839en_US
dc.identifier.orcid0000-0003-1136-3117en_US
dc.identifier.orcid0000-0002-7383-0609en_US
dc.identifier.orcid0000-0003-1182-7735en_US
dc.identifier.orcid0000-0001-9221-2892en_US
dc.identifier.pubmedid38059347-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

40
checked on Jan 18, 2025

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.