Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/33763
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiulieri, Stefano G-
dc.contributor.authorGuérillot, Romain-
dc.contributor.authorHolmes, Natasha E-
dc.contributor.authorBaines, Sarah L-
dc.contributor.authorHachani, Abderrahman-
dc.contributor.authorHayes, Ashleigh S-
dc.contributor.authorDaniel, Diane S-
dc.contributor.authorSeemann, Torsten-
dc.contributor.authorDavis, Joshua S-
dc.contributor.authorVan Hal, Sebastiaan-
dc.contributor.authorTong, Steven Y C-
dc.contributor.authorStinear, Timothy P-
dc.contributor.authorHowden, Benjamin P-
dc.date2023-
dc.date.accessioned2023-09-20T07:00:11Z-
dc.date.available2023-09-20T07:00:11Z-
dc.date.issued2023-09-26-
dc.identifier.citationCell Reports 2023-09-26; 42(9)en_US
dc.identifier.issn2211-1247-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/33763-
dc.description.abstractOutcomes of severe bacterial infections are determined by the interplay between host, pathogen, and treatments. While human genomics has provided insights into host factors impacting Staphylococcus aureus infections, comparatively little is known about S. aureus genotypes and disease severity. Building on the hypothesis that bacterial pathoadaptation is a key outcome driver, we developed a genome-wide association study (GWAS) framework to identify adaptive mutations associated with treatment failure and mortality in S. aureus bacteremia (1,358 episodes). Our research highlights the potential of vancomycin-selected mutations and vancomycin minimum inhibitory concentration (MIC) as key explanatory variables to predict infection severity. The contribution of bacterial variation was much lower for clinical outcomes (heritability <5%); however, GWASs allowed us to identify additional, MIC-independent candidate pathogenesis loci. Using supervised machine learning, we were able to quantify the predictive potential of these adaptive signatures. Our statistical genomics framework provides a powerful means to capture adaptive mutations impacting severe bacterial infections.en_US
dc.language.isoeng-
dc.subjectCP: Genomicsen_US
dc.subjectCP: Microbiologyen_US
dc.subjectStaphylococcus aureusen_US
dc.subjectbacteraemiaen_US
dc.subjectbacterial GWASen_US
dc.subjectmachine learningen_US
dc.subjectvancomycin resistanceen_US
dc.titleA statistical genomics framework to trace bacterial genomic predictors of clinical outcomes in Staphylococcus aureus bacteremia.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleCell Reportsen_US
dc.identifier.affiliationDepartment of Microbiology and Immunology, The University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australiaen_US
dc.identifier.affiliationInfectious Diseasesen_US
dc.identifier.affiliationThe Peter Doherty Instituteen_US
dc.identifier.affiliationCentre for Pathogen Genomics, The University of Melbourne, Melbourne, VIC 3000, Australia.en_US
dc.identifier.affiliationCentre for Pathogen Genomics, The University of Melbourne, Melbourne, VIC 3000, Australia.en_US
dc.identifier.affiliationDepartment of Infectious Diseases, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia; Menzies School of Health Research, Charles Darwin University, Casuarina, NT 0810, Australia.en_US
dc.identifier.affiliationDepartment of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Central Clinical School, University of Sydney, Camperdown, NSW 2050, Australia.en_US
dc.identifier.affiliationVictorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.en_US
dc.identifier.doi10.1016/j.celrep.2023.113069en_US
dc.type.contentTexten_US
dc.identifier.pubmedid37703880-
dc.description.startpage113069-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.fulltextNo Fulltext-
crisitem.author.deptInfectious Diseases-
crisitem.author.deptInfectious Diseases-
crisitem.author.deptData Analytics Research and Evaluation (DARE) Centre-
crisitem.author.deptInfectious Diseases-
crisitem.author.deptMicrobiology-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

42
checked on Nov 1, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.