Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/33621
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharma, Varun J-
dc.contributor.authorGreen, Alexander-
dc.contributor.authorMcLean, Aaron-
dc.contributor.authorAdegoke, John-
dc.contributor.authorGordon, Claire L-
dc.contributor.authorStarkey, Graham M-
dc.contributor.authorD'Costa, Rohit-
dc.contributor.authorJames, Fiona L-
dc.contributor.authorAfara, Isaac-
dc.contributor.authorLal, Sean-
dc.contributor.authorWood, Bayden-
dc.contributor.authorRaman, Jaishankar-
dc.date2023-
dc.date.accessioned2023-08-30T07:48:17Z-
dc.date.available2023-08-30T07:48:17Z-
dc.date.issued2023-12-
dc.identifier.citationHeart and Vessels 2023-12; 38(12)en_US
dc.identifier.issn1615-2573-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/33621-
dc.description.abstractTo demonstrate that point-of-care multimodal spectroscopy using Near-Infrared (NIR) and Raman Spectroscopy (RS) can be used to diagnose human heart tissue. We generated 105 spectroscopic scans, which comprised 4 NIR and 3 RS scans per sample to generate a "multimodal spectroscopic scan" (MSS) for each heart, done across 15 patients, 5 each from the dilated cardiomyopathy (DCM), Ischaemic Heart Disease (IHD) and Normal pathologies. Each of the MSS scans was undertaken in 3 s. Data were entered into machine learning (ML) algorithms to assess accuracy of MSS in diagnosing tissue type. The median age was 50 years (IQR 49-52) for IHD, 47 (IQR 45-50) for DCM and 36 (IQR 33-52) for healthy patients (p = 0.35), 60% of which were male. MSS identified key differences in IHD, DCM and normal heart samples in regions typically associated with fibrosis and collagen (NIR wavenumbers: 1433, 1509, 1581, 1689 and 1725 nm; RS wavelengths: 1658, 1450 and 1330 cm-1). In principal component (PC) analyses, these differences explained 99.2% of the variation in 4 PCs for NIR, 81.6% in 10 PCs for Raman, and 99.0% in 26 PCs for multimodal spectroscopic signatures. Using a stack machine learning algorithm with combined NIR and Raman data, our model had a precision of 96.9%, recall of 96.6%, specificity of 98.2% and Area Under Curve (AUC) of 0.989 (Table 1). NIR and Raman modalities alone had similar levels of precision at 94.4% and 89.8% respectively (Table 1). MSS combined with ML showed accuracy of 90% for detecting dilated cardiomyopathy, 100% for ischaemic heart disease and 100% for diagnosing healthy tissue. Multimodal spectroscopic signatures, based on NIR and Raman spectroscopy, could provide cardiac tissue scans in 3-s to aid accurate diagnoses of fibrosis in IHD, DCM and normal hearts. Table 1 Machine learning performance metrics for validation data sets of (a) Near-Infrared (NIR), (b) Raman and (c and d) multimodal data using logistic regression (LR), stochastic gradient descent (SGD) and support vector machines (SVM), with combined "stack" (LR + SGD + SVM) AUC Precision Recall Specificity (a) NIR model  Logistic regression 0.980 0.944 0.933 0.967  SGD 0.550 0.281 0.400 0.700  SVM 0.840 0.806 0.800 0.900  Stack 0.933 0.794 0.800 0.900 (b) Raman model  Logistic regression 0.985 0.940 0.929 0.960  SGD 0.892 0.869 0.857 0.932  SVM 0.992 0.940 0.929 0.960  Stack 0.954 0.869 0.857 0.932 (c) MSS: multimodal (NIR + Raman) to detect DCM vs. IHD vs. normal patients  Logistic regression 0.975 0.841 0.828 0.917  SGD 0.847 0.803 0.793 0.899  SVM 0.971 0.853 0.828 0.917  Stack 0.961 0.853 0.828 0.917 (d) MSS: multimodal (NIR + Raman) to detect pathological vs. normal patients  Logistic regression 0.961 0.969 0.966 0.984  SGD 0.944 0.967 0.966 0.923  SVM 1.000 1.000 1.000 1.000  Stack 1.000 0.944 0.931 0.969 Bold values indicate values obtained from the stack algorithm and used for analyses.en_US
dc.language.isoeng-
dc.subjectCardiomyopathyen_US
dc.subjectFibrosisen_US
dc.subjectPoint-of-careen_US
dc.subjectVibrational spectroscopyen_US
dc.titleTowards a point-of-care multimodal spectroscopy instrument for the evaluation of human cardiac tissue.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleHeart and Vesselsen_US
dc.identifier.affiliationDepartment of Surgery, Melbourne Medical School, University of Melbourne, Melbourne, Australia.en_US
dc.identifier.affiliationMonash Biospectroscopy, Monash University, Melbourne, Australia.en_US
dc.identifier.affiliationSpectromix Laboratory, Melbourne, VIC, Australia.en_US
dc.identifier.affiliationCardiac Surgeryen_US
dc.identifier.affiliationInfectious Diseasesen_US
dc.identifier.affiliationVictorian Liver Transplant Uniten_US
dc.identifier.affiliationDonateLife Victoria, Carlton, Melbourne, VIC, Australia.;Department of Intensive Care Medicine, Melbourne Health, Melbourne, VIC, Australia.en_US
dc.identifier.affiliationNorth Eastern Public Health Uniten_US
dc.identifier.affiliationSchool of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.en_US
dc.identifier.affiliationDepartment of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.en_US
dc.identifier.affiliation;Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.en_US
dc.identifier.affiliationDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.en_US
dc.identifier.doi10.1007/s00380-023-02292-3en_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0002-5008-4113en_US
dc.identifier.pubmedid37608153-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
crisitem.author.deptInfectious Diseases-
crisitem.author.deptVictorian Liver Transplant Unit-
crisitem.author.deptInfectious Diseases-
crisitem.author.deptCentre for Antibiotic Allergy and Research-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

68
checked on Dec 26, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.