Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/32886
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSugiyama, Michael G-
dc.contributor.authorBrown, Aidan I-
dc.contributor.authorVega-Lugo, Jesus-
dc.contributor.authorBorges, Jazlyn P-
dc.contributor.authorScott, Andrew M-
dc.contributor.authorJaqaman, Khuloud-
dc.contributor.authorFairn, Gregory D-
dc.contributor.authorAntonescu, Costin N-
dc.date2023-
dc.date.accessioned2023-06-07T01:56:53Z-
dc.date.available2023-06-07T01:56:53Z-
dc.date.issued2023-05-09-
dc.identifier.citationNature Communications 2023en_US
dc.identifier.issn2041-1723-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/32886-
dc.description.abstractThe epidermal growth factor receptor (EGFR) is a central regulator of cell physiology. EGFR is activated by ligand binding, triggering receptor dimerization, activation of kinase activity, and intracellular signaling. EGFR is transiently confined within various plasma membrane nanodomains, yet how this may contribute to regulation of EGFR ligand binding is poorly understood. To resolve how EGFR nanoscale compartmentalization gates ligand binding, we developed single-particle tracking methods to track the mobility of ligand-bound and total EGFR, in combination with modeling of EGFR ligand binding. In comparison to unliganded EGFR, ligand-bound EGFR is more confined and distinctly regulated by clathrin and tetraspanin nanodomains. Ligand binding to unliganded EGFR occurs preferentially in tetraspanin nanodomains, and disruption of tetraspanin nanodomains impairs EGFR ligand binding and alters the conformation of the receptor's ectodomain. We thus reveal a mechanism by which EGFR confinement within tetraspanin nanodomains regulates receptor signaling at the level of ligand binding.en_US
dc.language.isoeng-
dc.titleConfinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleNature Communicationsen_US
dc.identifier.affiliationDepartment of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.en_US
dc.identifier.affiliationDepartment of Physics, Toronto Metropolitan University, Toronto, ON, Canada.en_US
dc.identifier.affiliationDepartment of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA.en_US
dc.identifier.affiliationProgram in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.en_US
dc.identifier.affiliationOlivia Newton-John Cancer Research Instituteen_US
dc.identifier.affiliationLyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.en_US
dc.identifier.affiliationDepartment of Pathology, Dalhousie University, Halifax, NS, Canada.en_US
dc.identifier.doi10.1038/s41467-023-38390-zen_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0002-3443-6772en_US
dc.identifier.orcid0000-0003-3471-1911en_US
dc.identifier.orcid0000-0001-6508-168Xen_US
dc.identifier.orcid0000-0001-9192-6340en_US
dc.identifier.pubmedid37160944-
dc.description.volume14-
dc.description.issue1-
dc.description.startpage2681-
local.name.researcherScott, Andrew M
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.deptMolecular Imaging and Therapy-
crisitem.author.deptOlivia Newton-John Cancer Research Institute-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

26
checked on Nov 28, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.