Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/32704
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVandelannoote, Koen-
dc.contributor.authorBuultjens, Andrew H-
dc.contributor.authorPorter, Jessica L-
dc.contributor.authorVelink, Anita-
dc.contributor.authorWallace, John R-
dc.contributor.authorBlasdell, Kim R-
dc.contributor.authorDunn, Michael-
dc.contributor.authorBoyd, Victoria-
dc.contributor.authorFyfe, Janet A M-
dc.contributor.authorTay, Ee Laine-
dc.contributor.authorJohnson, Paul D R-
dc.contributor.authorWindecker, Saras M-
dc.contributor.authorGolding, Nick-
dc.contributor.authorStinear, Timothy P-
dc.date2023-
dc.date.accessioned2023-04-21T00:55:22Z-
dc.date.available2023-04-21T00:55:22Z-
dc.date.issued2023-04-14-
dc.identifier.citationeLife 2023-04-14; 12en_US
dc.identifier.issn2050-084X-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/32704-
dc.description.abstractBackground: Buruli ulcer (BU) is a neglected tropical disease caused by infection of subcutaneous tissue with Mycobacterium ulcerans. BU is commonly reported across rural regions of Central and West Africa but has been increasing dramatically in temperate southeast Australia around the major metropolitan city of Melbourne, with most disease transmission occurring in the summer months. Previous research has shown that Australian native possums are reservoirs of M. ulcerans and that they shed the bacteria in their fecal material (excreta). Field surveys show that locales where possums harbor M. ulcerans overlap with human cases of BU, raising the possibility of using possum excreta surveys to predict the risk of disease occurrence in humans. Methods: We thus established a highly structured 12-month possum excreta surveillance program across an area of 350 km2 in the Mornington Peninsula area 70 km south of Melbourne, Australia. The primary objective of our study was to assess using statistical modelling if M. ulcerans surveillance of possum excreta provided useful information for predicting future human BU case locations. Results: Over two sampling campaigns in summer and winter, we collected 2282 possum excreta specimens of which 11% were PCR positive for M. ulcerans-specific DNA. Using the spatial scanning statistical tool SaTScan, we observed non-random, co-correlated clustering of both M. ulcerans positive possum excreta and human BU cases. We next trained a statistical model with the Mornington Peninsula excreta survey data to predict the future likelihood of human BU cases occurring in the region. By observing where human BU cases subsequently occurred, we show that the excreta model performance was superior to a null model trained using the previous year's human BU case incidence data (AUC 0.66 vs 0.55). We then used data unseen by the excreta-informed model from a new survey of 661 possum excreta specimens in Geelong, a geographically separate BU endemic area to the southwest of Melbourne, to prospectively predict the location of human BU cases in that region. As for the Mornington Peninsula, the excreta-based BU prediction model outperformed the null model (AUC 0.75 vs 0.50) and pinpointed specific locations in Geelong where interventions could be deployed to interrupt disease spread. Conclusions: This study highlights the One Health nature of BU by confirming a quantitative relationship between possum excreta shedding of M. ulcerans and humans developing BU. The excreta survey-informed modeling we have described will be a powerful tool for efficient targeting of public health responses to stop BU. Funding: This research was supported by the National Health and Medical Research Council of Australia and the Victorian Government Department of Health (GNT1152807 and GNT1196396).en_US
dc.language.isoeng-
dc.subjectepidemiologyen_US
dc.subjectglobal healthen_US
dc.subjectinfectious diseaseen_US
dc.subjectmicrobiologyen_US
dc.titleStatistical modelling based on structured surveys of Australian native possum excreta harbouring Mycobacterium ulcerans predicts Buruli ulcer occurrence in humans.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleeLifeen_US
dc.identifier.affiliationDepartment of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.en_US
dc.identifier.affiliationDepartment of Biology, Millersville University, Millersville, United States.en_US
dc.identifier.affiliationCSIRO Health and Biosecurity, Geelong, Australia.en_US
dc.identifier.affiliationDoherty Institute for Infection and Immunity, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia.en_US
dc.identifier.affiliationHealth Protection branch, Department of Healt, Victoria, Australia.en_US
dc.identifier.affiliationNorth Eastern Public Health Uniten_US
dc.identifier.affiliationSchool of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Australia.en_US
dc.identifier.affiliationSpatial Ecology and Epidemiology Group, Curtin University, Bentley, Australia.en_US
dc.identifier.doi10.7554/eLife.84983en_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0002-5984-1328en_US
dc.identifier.orcid0000-0002-4870-8353en_US
dc.identifier.orcid0000-0001-8916-5570en_US
dc.identifier.orcid0000-0003-0150-123Xen_US
dc.identifier.pubmedid37057888-
dc.description.volume12-
local.name.researcherJohnson, Paul D R
item.fulltextNo Fulltext-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptInfectious Diseases-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

74
checked on Feb 21, 2025

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.