Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/32151
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWong, Sheng-
dc.contributor.authorSimmons, Anj-
dc.contributor.authorRivera-Villicana, Jessica-
dc.contributor.authorBarnett, Scott-
dc.contributor.authorSivathamboo, Shobi-
dc.contributor.authorPerucca, Piero-
dc.contributor.authorGe, Zongyuan-
dc.contributor.authorKwan, Patrick-
dc.contributor.authorKuhlmann, Levin-
dc.contributor.authorVasa, Rajesh-
dc.contributor.authorMouzakis, Kon-
dc.contributor.authorO'Brien, Terence J-
dc.date2023-
dc.date.accessioned2023-02-14T04:27:42Z-
dc.date.available2023-02-14T04:27:42Z-
dc.date.issued2023-02-05-
dc.identifier.citationEpilepsia Open 2023-06; 8(2)en_US
dc.identifier.issn2470-9239-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/32151-
dc.description.abstractElectroencephalogram (EEG) datasets from epilepsy patients have been used to develop seizure detection and prediction algorithms using machine learning (ML) techniques with the aim of implementing the learned model in a device. However, the format and structure of publicly available datasets are different from each other and there is a lack of guidelines on the use of these datasets. This impacts the generatability, generalisability and reproducibility of the results and findings produced by the studies. In this narrative review, we compiled and compared the different characteristics of the publicly available EEG datasets that are commonly used to develop seizure detection and prediction algorithms. We investigated the advantages and limitations of the characteristics of the EEG datasets. Based on our study, we identified 17 characteristics that make the EEG datasets unique from each other. We also briefly looked into how certain characteristics of the publicly available datasets affect the performance and outcome of a study, as well as the influences it has on the choice of ML techniques and pre-processing steps required to develop seizure detection and prediction algorithms. In conclusion, this study provides a guideline on the choice of publicly available EEG datasets to both clinicians and scientists working to develop a reproducible, generalisable and effective seizure detection and prediction algorithm.en_US
dc.language.isoeng-
dc.subjectclassificationen_US
dc.subjectelectroencephalographyen_US
dc.subjectmachine learningen_US
dc.titleEEG Datasets for Seizure Detection and Prediction - A Review.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleEpilepsia Openen_US
dc.identifier.affiliationApplied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia.en_US
dc.identifier.affiliationMedicine (University of Melbourne)en_US
dc.identifier.affiliationDepartment of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.en_US
dc.identifier.affiliationDepartment of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.en_US
dc.identifier.affiliationMonash eResearch Centre, Monash University, Clayton, Victoria, Australia.en_US
dc.identifier.affiliationDepartment of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.en_US
dc.identifier.affiliationDepartment of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia.en_US
dc.identifier.affiliationDepartment of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.en_US
dc.identifier.doi10.1002/epi4.12704en_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0001-7444-1405en_US
dc.identifier.orcid0000-0003-4638-9579en_US
dc.identifier.orcid0000-0002-7855-7066en_US
dc.identifier.orcid0000-0001-7310-276Xen_US
dc.identifier.orcid0000-0002-5108-6348en_US
dc.identifier.pubmedid36740244-
local.name.researcherPerucca, Piero
item.grantfulltextnone-
item.openairetypeJournal Article-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNeurology-
crisitem.author.deptComprehensive Epilepsy Program-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

46
checked on Nov 21, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.