Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/31839
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBird, Alix-
dc.contributor.authorOakden-Rayner, Lauren-
dc.contributor.authorMcMaster, Christopher-
dc.contributor.authorSmith, Luke A-
dc.contributor.authorZeng, Minyan-
dc.contributor.authorWechalekar, Mihir D-
dc.contributor.authorRay, Shonket-
dc.contributor.authorProudman, Susanna-
dc.contributor.authorPalmer, Lyle J-
dc.date2022-
dc.date.accessioned2023-01-12T04:50:27Z-
dc.date.available2023-01-12T04:50:27Z-
dc.date.issued2022-12-12-
dc.identifier.citationArthritis Research &Therapy 2022; 24(1)en_US
dc.identifier.issn1478-6362-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/31839-
dc.description.abstractRheumatoid arthritis is an autoimmune condition that predominantly affects the synovial joints, causing joint destruction, pain, and disability. Historically, the standard for measuring the long-term efficacy of disease-modifying antirheumatic drugs has been the assessment of plain radiographs with scoring techniques that quantify joint damage. However, with significant improvements in therapy, current radiographic scoring systems may no longer be fit for purpose for the milder spectrum of disease seen today. We argue that artificial intelligence is an apt solution to further improve upon radiographic scoring, as it can readily learn to recognize subtle patterns in imaging data to not only improve efficiency, but can also increase the sensitivity to variation in mild disease. Current work in the area demonstrates the feasibility of automating scoring but is yet to take full advantage of the strengths of artificial intelligence. By fully leveraging the power of artificial intelligence, faster and more sensitive scoring could enable the ongoing development of effective treatments for patients with rheumatoid arthritis.en_US
dc.language.isoeng-
dc.subjectArtificial intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectRadiographic scoringen_US
dc.subjectRheumatoid arthritisen_US
dc.titleArtificial intelligence and the future of radiographic scoring in rheumatoid arthritis: a viewpoint.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleArthritis Research &Therapyen_US
dc.identifier.affiliationAustralian Institute of Machine Learning, University of Adelaide, Corner Frome Road and North Terrace, Adelaide, SA.en_US
dc.identifier.affiliationAustralian Institute of Machine Learning, University of Adelaide, Corner Frome Road and North Terrace, Adelaide, SA, 5000, Australia.en_US
dc.identifier.affiliationRheumatologyen_US
dc.identifier.affiliationAustralian Institute of Machine Learning, University of Adelaide, Corner Frome Road and North Terrace, Adelaide, SA, 5000, Australia.en_US
dc.identifier.affiliationDepartment of Rheumatology, Flinders Medical Centre, and College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.en_US
dc.identifier.affiliationArtificial Intelligence and Machine Learning, GlaxoSmithKline, South San Francisco, CA, USA.en_US
dc.identifier.affiliationDepartment of Rheumatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.en_US
dc.identifier.doi10.1186/s13075-022-02972-xen_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0002-8676-0822en_US
dc.identifier.pubmedid36510330-
dc.description.volume24-
dc.description.issue1-
dc.description.startpage268-
dc.subject.meshtermssecondaryArthritis, Rheumatoid/diagnostic imaging-
dc.subject.meshtermssecondaryArthritis, Rheumatoid/drug therapy-
dc.subject.meshtermssecondaryAntirheumatic Agents/therapeutic use-
local.name.researcherMcMaster, Christopher
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.deptClinical Pharmacology and Therapeutics-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

34
checked on Nov 24, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.