Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/30908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJanmohamed, Mubeen-
dc.contributor.authorNhu, Duong-
dc.contributor.authorKuhlmann, Levin-
dc.contributor.authorGilligan, Amanda K-
dc.contributor.authorTan, Chang Wei-
dc.contributor.authorPerucca, Piero-
dc.contributor.authorO'Brien, Terence J-
dc.contributor.authorKwan, Patrick-
dc.date2022-
dc.date.accessioned2022-09-20T06:52:00Z-
dc.date.available2022-09-20T06:52:00Z-
dc.date.issued2022-
dc.identifier.citationBrain Communications 2022; 4(5): fcac218en_US
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/30908-
dc.description.abstractThe application of deep learning approaches for the detection of interictal epileptiform discharges is a nascent field, with most studies published in the past 5 years. Although many recent models have been published demonstrating promising results, deficiencies in descriptions of data sets, unstandardized methods, variation in performance evaluation and lack of demonstrable generalizability have made it difficult for these algorithms to be compared and progress to clinical validity. A few recent publications have provided a detailed breakdown of data sets and relevant performance metrics to exemplify the potential of deep learning in epileptiform discharge detection. This review provides an overview of the field and equips computer and data scientists with a synopsis of EEG data sets, background and epileptiform variation, model evaluation parameters and an awareness of the performance metrics of high impact and interest to the trained clinical and neuroscientist EEG end user. The gold standard and inter-rater disagreements in defining epileptiform abnormalities remain a challenge in the field, and a hierarchical proposal for epileptiform discharge labelling options is recommended. Standardized descriptions of data sets and reporting metrics are a priority. Source code-sharing and accessibility to public EEG data sets will increase the rigour, quality and progress in the field and allow validation and real-world clinical translation.en_US
dc.subjectEEGen_US
dc.subjectautomated detectionen_US
dc.subjectdeep learningen_US
dc.subjectepilepsyen_US
dc.subjectepileptiform abnormalitiesen_US
dc.titleMoving the field forward: detection of epileptiform abnormalities on scalp electroencephalography using deep learning-clinical application perspectives.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleBrain Communicationsen_US
dc.identifier.affiliationComprehensive Epilepsy Programen_US
dc.identifier.affiliationDepartment of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC 3800, Australiaen_US
dc.identifier.affiliationNeurosciences Clinical Institute, Epworth Healthcare Hospital, Melbourne, VIC 3121, Australiaen_US
dc.identifier.affiliationMedicineen_US
dc.identifier.affiliationDepartment of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australiaen_US
dc.identifier.affiliationDepartment of Neurology, Alfred Health, Melbourne, VIC 3004, Australiaen_US
dc.identifier.affiliationDepartment of Neurology, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australiaen_US
dc.identifier.doi10.1093/braincomms/fcac218en_US
dc.type.contentTexten_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8601-3686en_US
dc.identifier.pubmedid36092304
local.name.researcherGilligan, Amanda K
item.grantfulltextnone-
item.openairetypeJournal Article-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNeurology-
crisitem.author.deptNeurology-
crisitem.author.deptComprehensive Epilepsy Program-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

54
checked on Nov 22, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.