Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/30391
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWalsh, Simon Lf-
dc.contributor.authorMackintosh, John A-
dc.contributor.authorCalandriello, Lucio-
dc.contributor.authorSilva, Mario-
dc.contributor.authorSverzellati, Nicola-
dc.contributor.authorLarici, Anna Rita-
dc.contributor.authorHumphries, Stephen M-
dc.contributor.authorLynch, David A-
dc.contributor.authorJo, Helen E-
dc.contributor.authorGlaspole, Ian-
dc.contributor.authorGrainge, Christopher-
dc.contributor.authorGoh, Nicole S L-
dc.contributor.authorHopkins, Peter M A-
dc.contributor.authorMoodley, Yuben-
dc.contributor.authorReynolds, Paul N-
dc.contributor.authorZappala, Christopher-
dc.contributor.authorKeir, Gregory-
dc.contributor.authorCooper, Wendy A-
dc.contributor.authorMahar, Annabelle M-
dc.contributor.authorEllis, Samantha-
dc.contributor.authorWells, Athol U-
dc.contributor.authorCorte, Tamera J-
dc.date2022-
dc.date.accessioned2022-06-23T00:40:41Z-
dc.date.available2022-06-23T00:40:41Z-
dc.date.issued2022-06-13-
dc.identifier.citationAmerican Journal of Respiratory and Critical Care Medicine 20221; 206(7): 883-891en_US
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/30391-
dc.description.abstractRATIONALE Reliable outcome prediction in patients with fibrotic lung disease using baseline high-resolution computed tomography (HRCT) data remains challenging. OBJECTIVES To evaluate the prognostic accuracy of a deep learning algorithm (SOFIA), trained and validated in the identification of UIP-like features on HRCT (UIP probability), in a large cohort of well characterised patients with progressive fibrotic lung disease, drawn from a national registry. METHODS SOFIA and radiologist-UIP probabilities were converted to PIOPED-based UIP probability categories (UIP not included in the differential: 0-4%, low probability of UIP: 5-29%, intermediate probability of UIP: 30-69%, high probability of UIP: 70-94%, and pathognomonic for UIP:95-100%) and their prognostic utility assessed using Cox proportional hazards modelling. MEASUREMENTS AND MAIN RESULTS On multivariable analysis adjusting for age, gender, guideline based radiologic diagnosis and disease severity (using total ILD extent on HRCT, %predicted FVC, DLco or the CPI), only SOFIA-UIP probability PIOPED categories predicted survival. SOFIA-PIOPED UIP probability categories remained prognostically significant in patients considered indeterminate (n=83) by expert radiologist consensus (HR1.73, p<0.0001, 95%CI 1.40-2.14). In patients undergoing surgical lung biopsy (SLB) (n=86), after adjusting for guideline-based histologic pattern and total ILD extent on HRCT, only SOFIA-PIOPED probabilities were predictive of mortality (HR1.75, p<0.0001, 95%CI 1.37-2.25). CONCLUSIONS Deep learning-based UIP probability on HRCT provides enhanced outcome prediction in patients with progressive fibrotic lung disease when compared to expert radiologist evaluation or guideline-based histologic pattern. In principle this tool may be useful in multidisciplinary characterisation of fibrotic lung disease. The utility of this technology as a decision support system when ILD expertise is unavailable requires further investigation.en_US
dc.language.isoeng-
dc.subjectDeep learningen_US
dc.subjectIdiopathic pulmonary fibrosisen_US
dc.subjectInterstitial lung diseaseen_US
dc.subjectRadiologyen_US
dc.subjectUsual interstitial pneumoniaen_US
dc.titleDeep Learning-based Outcome Prediction in Progressive Fibrotic Lung Disease Using High-resolution Computed Tomography.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleAmerican journal of respiratory and critical care medicineen_US
dc.identifier.affiliationAlfred Health, 5392, Department of Radiology, Melbourne, Victoria, Australia..en_US
dc.identifier.affiliationRoyal Prince Alfred Hospital, 2205, Department of Respiratory and Sleep Medicine, Camperdown, New South Wales, Australia..en_US
dc.identifier.affiliationRespiratory and Sleep Medicineen_US
dc.identifier.affiliationAlfred Health, 5392, Allergy, Immunology & Respiratory Medicine Department, Melbourne, Victoria, Australia..en_US
dc.identifier.affiliationThe Prince Charles Hospital, 67567, Chermside, Queensland, Australia..en_US
dc.identifier.affiliationThe University of Western Australia, Respiratory Medicine, Perth, Western Australia, Australia..en_US
dc.identifier.affiliationRoyal Adelaide Hospital, Thoracic Medicine, Adelaide, South Australia..en_US
dc.identifier.affiliationThe University of Queensland, 1974, Saint Lucia, Queensland, Australia..en_US
dc.identifier.affiliationPrincess Alexandra Hospital, Brisbane, Queensland, Australia..en_US
dc.identifier.affiliationRoyal Prince Alfred Hospital, 2205, Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Camperdown, New South Wales, Australia..en_US
dc.identifier.affiliationImperial College London, 4615, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland..en_US
dc.identifier.affiliationThe Alfred Hospital, Melbourne, Australia..en_US
dc.identifier.affiliationMonash University, Melbourne, Australia..en_US
dc.identifier.affiliationJohn Hunter Hospital, 37024, New Lambton Heights, New South Wales, Australia..en_US
dc.identifier.affiliationThe Prince Charles Hospital, Brisbane, Queensland, Australia..en_US
dc.identifier.affiliationCentre of Research Excellence in Pulmonary Fibrosis, Camperdown , New South Wales, Australia..en_US
dc.identifier.affiliationThe University of Sydney, 4334, Sydney, New South Wales, Australia..en_US
dc.identifier.affiliationFondazione Policlinico Universitario Agostino Gemelli IRCCS, 18654, Dipartimento di Diagnostica per immagini, Roma, Italy..en_US
dc.identifier.affiliationUniversita degli Studi di Parma, 9370, Section of Radiology, Department of Medicine and Surgery, Parma, Italy..en_US
dc.identifier.affiliationDepartment of Surgical Sciences, Ospedale Maggiore di Parma, Parma, Italy..en_US
dc.identifier.affiliationNational Jewish Health, 2930, Denver, Colorado, United States..en_US
dc.identifier.affiliationNational Jewish Health, Radiology, Denver, Colorado, United States..en_US
dc.identifier.affiliationRoyal Brompton Hospital, Interstitial Lung Disease Unit, London, United Kingdom of Great Britain and Northern Ireland..en_US
dc.identifier.affiliationInstitute for Breathing and Sleepen_US
dc.identifier.pubmedurihttps://pubmed.ncbi.nlm.nih.gov/35696341/en_US
dc.identifier.doi10.1164/rccm.202112-2684OCen_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0002-2538-7032en_US
dc.identifier.orcid0000-0002-5113-4530en_US
dc.identifier.orcid0000-0003-2065-4346en_US
dc.identifier.pubmedid35696341-
local.name.researcherGoh, Nicole S L
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.deptRespiratory and Sleep Medicine-
crisitem.author.deptInstitute for Breathing and Sleep-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

66
checked on Nov 27, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.