Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/28987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSinclair, Benjamin-
dc.contributor.authorCahill, Varduhi-
dc.contributor.authorSeah, Jarrel-
dc.contributor.authorKitchen, Andy-
dc.contributor.authorVivash, Lucy E-
dc.contributor.authorChen, Zhibin-
dc.contributor.authorMalpas, Charles B-
dc.contributor.authorO'Shea, Marie F-
dc.contributor.authorDesmond, Patricia M-
dc.contributor.authorHicks, Rodney J-
dc.contributor.authorMorokoff, Andrew P-
dc.contributor.authorKing, James A-
dc.contributor.authorFabinyi, Gavin C-
dc.contributor.authorKaye, Andrew H-
dc.contributor.authorKwan, Patrick-
dc.contributor.authorBerkovic, Samuel F-
dc.contributor.authorLaw, Meng-
dc.contributor.authorO'Brien, Terence J-
dc.date2022-03-25-
dc.date.accessioned2022-03-23T05:17:39Z-
dc.date.available2022-03-23T05:17:39Z-
dc.date.issued2022-
dc.identifier.citationEpilepsia 2022; 63(5): 1081-1092en
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/28987-
dc.description.abstractAround 30% of patients undergoing surgical resection for drug-resistant mesial temporal lobe epilepsy (MTLE) do not obtain seizure freedom. Success of anterior temporal lobe resection (ATLR) critically depends on the careful selection of surgical candidates, aiming at optimizing seizure freedom while minimizing postoperative morbidity. Structural MRI and FDG-PET neuroimaging are routinely used in presurgical assessment and guide the decision to proceed to surgery. In this study, we evaluate the potential of machine learning techniques (logistic regression, support vector machines, random forests and artificial neural networks) applied to standard presurgical MRI and PET imaging features to provide enhanced prognostic value relative to current practice. In the study cohort, 24/82 (28.3%) who underwent an ATLR for drug resistant MTLE did not achieve an Engel Class I (i.e. free of disabling seizures) outcome at a minimum of 2 years post-operative follow-up. We found that machine learning approaches were able to predict up to 73% of the 24 ATLR surgical patients who did not achieve a Class I outcome, at the expense of incorrect prediction for up to 31% of patients who did achieve a Class I outcome. Overall accuracies ranged from 70-80% and area under curve (AUC) of receiver operating characteristic of 0.75-0.81. We additionally found that information regarding overall extent of both total and significantly hypometabolic tissue resected was crucial to predictive performance, with AUC dropping to 0.59-0.62 using presurgical information alone. Incorporating the laterality of seizure onset and the choice of machine learning algorithm did not significantly change predictive performance. Collectively, these results indicate that 'acceptable' to 'good' patient specific prognostication for drug resistant MTLE surgery is feasible with machine learning approaches utilizing commonly collected imaging modalities, but that information on the surgical resection region is critical for optimal prognostication.en
dc.language.isoeng-
dc.subjectEpilepsyen
dc.subjectFDG-PETen
dc.subjectMachine Learningen
dc.subjectSurgeryen
dc.titleMachine Learning Approaches for Imaging-Based Prognostication of the Outcome of Surgery for Mesial Temporal Lobe Epilepsy.en
dc.typeJournal Articleen
dc.identifier.journaltitleEpilepsiaen
dc.identifier.affiliationDepartment of Medicine, University of Melbourne, Melbourne, Victoria, Australia..en
dc.identifier.affiliationEpilepsy Research Centreen
dc.identifier.affiliationSurgery (University of Melbourne)en
dc.identifier.affiliationDepartment of Surgery, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia..en
dc.identifier.affiliationPeter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia..en
dc.identifier.affiliationDepartment of Radiology, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia..en
dc.identifier.affiliationComprehensive Epilepsy Programen
dc.identifier.affiliationMelbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia..en
dc.identifier.affiliationDepartment of Radiology, Alfred Health, Melbourne, Victoria, Australia..en
dc.identifier.affiliationDepartment of Neurology, Melbourne Brain Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia..en
dc.identifier.affiliationDepartment Neurology, Alfred Health, Melbourne, Victoria, Australia..en
dc.identifier.affiliationDepartment of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia..en
dc.identifier.affiliationAcademic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom..en
dc.identifier.affiliationDepartment of Neurosurgery, Hadassah Hebrew University Hospital, Jerusalem, Israel..en
dc.identifier.affiliationDivision of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom..en
dc.identifier.pubmedurihttps://pubmed.ncbi.nlm.nih.gov/35266138/en
dc.identifier.doi10.1111/epi.17217en
dc.type.contentTexten
dc.identifier.orcidhttps://orcid.org/0000-0002-0850-3644en
dc.identifier.orcidhttps://orcid.org/0000-0002-1182-0907en
dc.identifier.orcidhttps://orcid.org/0000-0003-0534-3718en
dc.identifier.orcidhttps://orcid.org/0000-0001-7310-276Xen
dc.identifier.orcidhttps://orcid.org/0000-0003-4580-841Xen
dc.identifier.orcid0000-0003-0472-0382en
dc.identifier.pubmedid35266138-
local.name.researcherBerkovic, Samuel F
item.fulltextNo Fulltext-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptClinical Neuropsychology-
crisitem.author.deptNeurosurgery-
crisitem.author.deptEpilepsy Research Centre-
crisitem.author.deptNeurology-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

46
checked on Dec 19, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.