Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/28982
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Olaiya, Muideen T | - |
dc.contributor.author | Sodhi-Berry, Nita | - |
dc.contributor.author | Dalli, Lachlan L | - |
dc.contributor.author | Bam, Kiran | - |
dc.contributor.author | Thrift, Amanda G | - |
dc.contributor.author | Katzenellenbogen, Judith M | - |
dc.contributor.author | Nedkoff, Lee | - |
dc.contributor.author | Kim, Joosup | - |
dc.contributor.author | Kilkenny, Monique F | - |
dc.date | 2022-03-11 | - |
dc.date.accessioned | 2022-03-23T05:17:36Z | - |
dc.date.available | 2022-03-23T05:17:36Z | - |
dc.date.issued | 2022-03 | - |
dc.identifier.citation | Current Neurology and Neuroscience Reports 2022; 22(3): 151-160 | en |
dc.identifier.uri | https://ahro.austin.org.au/austinjspui/handle/1/28982 | - |
dc.description.abstract | To critically appraise literature on recent advances and methods using "big data" to evaluate stroke outcomes and associated factors. Recent big data studies provided new evidence on the incidence of stroke outcomes, and important emerging predictors of these outcomes. Main highlights included the identification of COVID-19 infection and exposure to a low-dose particulate matter as emerging predictors of mortality post-stroke. Demographic (age, sex) and geographical (rural vs. urban) disparities in outcomes were also identified. There was a surge in methodological (e.g., machine learning and validation) studies aimed at maximizing the efficiency of big data for improving the prediction of stroke outcomes. However, considerable delays remain between data generation and publication. Big data are driving rapid innovations in research of stroke outcomes, generating novel evidence for bridging practice gaps. Opportunity exists to harness big data to drive real-time improvements in stroke outcomes. | en |
dc.language.iso | eng | - |
dc.subject | Big data | en |
dc.subject | Machine learning | en |
dc.subject | Mortality | en |
dc.subject | Outcomes | en |
dc.subject | Stroke | en |
dc.subject | Validation studies | en |
dc.title | The Allure of Big Data to Improve Stroke Outcomes: Review of Current Literature. | en |
dc.type | Journal Article | en |
dc.identifier.journaltitle | Current neurology and neuroscience reports | en |
dc.identifier.affiliation | Stroke and Ageing Research, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.. | en |
dc.identifier.affiliation | Cardiovascular Research Group, School of Population and Global Health, The University of Western Australia, Perth, WA, Australia.. | en |
dc.identifier.affiliation | Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.. | en |
dc.identifier.affiliation | The Florey Institute of Neuroscience and Mental Health | en |
dc.identifier.pubmeduri | https://pubmed.ncbi.nlm.nih.gov/35274192/ | en |
dc.identifier.doi | 10.1007/s11910-022-01180-z | en |
dc.type.content | Text | en |
dc.identifier.orcid | http://orcid.org/0000-0002-4070-0533 | en |
dc.identifier.orcid | http://orcid.org/0000-0003-3406-6019 | en |
dc.identifier.orcid | http://orcid.org/0000-0003-1449-9132 | en |
dc.identifier.orcid | http://orcid.org/0000-0002-3970-625X | en |
dc.identifier.orcid | http://orcid.org/0000-0001-8533-4170 | en |
dc.identifier.orcid | 0000-0002-4079-0428 | en |
dc.identifier.orcid | 0000-0002-3375-287X | en |
dc.identifier.pubmedid | 35274192 | - |
item.grantfulltext | none | - |
item.openairetype | Journal Article | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Journal articles |
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.