Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/28559
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMomeni, Saba-
dc.contributor.authorFazlollahi, Amir-
dc.contributor.authorLebrat, Leo-
dc.contributor.authorYates, Paul A-
dc.contributor.authorRowe, Christopher C-
dc.contributor.authorGao, Yongsheng-
dc.contributor.authorLiew, Alan Wee-Chung-
dc.contributor.authorSalvado, Olivier-
dc.date2021-
dc.date.accessioned2022-01-10T04:56:07Z-
dc.date.available2022-01-10T04:56:07Z-
dc.date.issued2021-12-16-
dc.identifier.citationFrontiers in Neuroscience 2021; 15: 778767en
dc.identifier.issn1662-4548
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/28559-
dc.description.abstractCerebral microbleeds (CMB) are increasingly present with aging and can reveal vascular pathologies associated with neurodegeneration. Deep learning-based classifiers can detect and quantify CMB from MRI, such as susceptibility imaging, but are challenging to train because of the limited availability of ground truth and many confounding imaging features, such as vessels or infarcts. In this study, we present a novel generative adversarial network (GAN) that has been trained to generate three-dimensional lesions, conditioned by volume and location. This allows one to investigate CMB characteristics and create large training datasets for deep learning-based detectors. We demonstrate the benefit of this approach by achieving state-of-the-art CMB detection of real CMB using a convolutional neural network classifier trained on synthetic CMB. Moreover, we showed that our proposed 3D lesion GAN model can be applied on unseen dataset, with different MRI parameters and diseases, to generate synthetic lesions with high diversity and without needing laboriously marked ground truth.en
dc.language.isoeng
dc.subjectSWI imagesen
dc.subjectcerebral microbleeden
dc.subjectdata augmentationen
dc.subjectdeep learningen
dc.subjectgenerative adversarial networken
dc.subjectsynthetic dataen
dc.titleGenerative Model of Brain Microbleeds for MRI Detection of Vascular Marker of Neurodegenerative Diseases.en
dc.typeJournal Articleen
dc.identifier.journaltitleFrontiers in Neuroscienceen
dc.identifier.affiliationCommonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian E-Health Research Centre, Brisbane, QLD, Australia..en
dc.identifier.affiliationSchool of Engineering and Built Environment, Griffith University, Nathan, QLD, Australia..en
dc.identifier.affiliationDepartment of Nuclear Medicine, Centre for PET, Austin Health, Heidelberg, VIC, Australia..en
dc.identifier.affiliationCommonwealth Scientific and Industrial Research Organisation (CSIRO) Data61, Brisbane, QLD, Australia..en
dc.identifier.affiliationSchool of Information and Communication Technology, Griffith University, Nathan, QLD, Australia..en
dc.identifier.affiliationQueensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia..en
dc.identifier.affiliationThe Florey Institute of Neuroscience and Mental Healthen
dc.identifier.affiliationMolecular Imaging and Therapyen
dc.identifier.affiliationGeriatric Medicineen
dc.identifier.pubmedurihttps://pubmed.ncbi.nlm.nih.gov/34975381/en
dc.identifier.doi10.3389/fnins.2021.778767en
dc.type.contentTexten
dc.identifier.orcid0000-0001-9317-0145en
dc.identifier.orcid0000-0003-3910-2453en
dc.identifier.orcid0000-0002-2720-8739en
dc.identifier.pubmedid34975381
local.name.researcherRowe, Christopher C
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.deptAged Care-
crisitem.author.deptGeriatric Medicine-
crisitem.author.deptMolecular Imaging and Therapy-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

40
checked on Nov 28, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.