Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/25033
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheung, Carol Y | - |
dc.contributor.author | Xu, Dejiang | - |
dc.contributor.author | Cheng, Ching-Yu | - |
dc.contributor.author | Sabanayagam, Charumathi | - |
dc.contributor.author | Tham, Yih-Chung | - |
dc.contributor.author | Yu, Marco | - |
dc.contributor.author | Rim, Tyler Hyungtaek | - |
dc.contributor.author | Chai, Chew Yian | - |
dc.contributor.author | Gopinath, Bamini | - |
dc.contributor.author | Mitchell, Paul L R | - |
dc.contributor.author | Poulton, Richie | - |
dc.contributor.author | Moffitt, Terrie E | - |
dc.contributor.author | Caspi, Avshalom | - |
dc.contributor.author | Yam, Jason C | - |
dc.contributor.author | Tham, Clement C | - |
dc.contributor.author | Jonas, Jost B | - |
dc.contributor.author | Wang, Ya Xing | - |
dc.contributor.author | Song, Su Jeong | - |
dc.contributor.author | Burrell, Louise M | en |
dc.contributor.author | Farouque, Omar | - |
dc.contributor.author | Li, Ling Jun | - |
dc.contributor.author | Tan, Gavin | - |
dc.contributor.author | Ting, Daniel S W | - |
dc.contributor.author | Hsu, Wynne | - |
dc.contributor.author | Lee, Mong Li | - |
dc.contributor.author | Wong, Tien Y | - |
dc.date | 2020-10-12 | - |
dc.date.accessioned | 2020-10-15T03:15:14Z | - |
dc.date.available | 2020-10-15T03:15:14Z | - |
dc.date.issued | 2021-06 | - |
dc.identifier.citation | Nature Biomedical Engineering 2021; 5(6): 498-508 | en |
dc.identifier.uri | https://ahro.austin.org.au/austinjspui/handle/1/25033 | - |
dc.description.abstract | Retinal blood vessels provide information on the risk of cardiovascular disease (CVD). Here, we report the development and validation of deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs, using diverse multiethnic multicountry datasets that comprise more than 70,000 images. Retinal-vessel calibre measured by the models and by expert human graders showed high agreement, with overall intraclass correlation coefficients of between 0.82 and 0.95. The models performed comparably to or better than expert graders in associations between measurements of retinal-vessel calibre and CVD risk factors, including blood pressure, body-mass index, total cholesterol and glycated-haemoglobin levels. In retrospectively measured prospective datasets from a population-based study, baseline measurements performed by the deep-learning system were associated with incident CVD. Our findings motivate the development of clinically applicable explainable end-to-end deep-learning systems for the prediction of CVD on the basis of the features of retinal vessels in retinal photographs. | en |
dc.language.iso | eng | - |
dc.title | A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. | en |
dc.type | Journal Article | en |
dc.identifier.journaltitle | Nature Biomedical Engineering | en |
dc.identifier.affiliation | Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore | en |
dc.identifier.affiliation | School of Computing, National University of Singapore, Singapore, Singapore | en |
dc.identifier.affiliation | Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore | en |
dc.identifier.affiliation | Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China | en |
dc.identifier.affiliation | Emergency Medicine Department, National University Hospital, Singapore, Singapore | en |
dc.identifier.affiliation | Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore | en |
dc.identifier.affiliation | Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore | en |
dc.identifier.affiliation | Centre for Vision Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia | en |
dc.identifier.affiliation | Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand | en |
dc.identifier.affiliation | Department of Psychology and Neuroscience, Duke University, Durham, NC, USA | en |
dc.identifier.affiliation | Medicine (University of Melbourne) | en |
dc.identifier.affiliation | Department of Ophthalmology, Medical Faculty Mannheim, Ruprecht-Karls-University, Heidelberg, Germany | en |
dc.identifier.affiliation | Beijing Ophthalmology & Visual Science Key Lab, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China | en |
dc.identifier.affiliation | Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea | en |
dc.identifier.affiliation | Department of Cardiology, Austin Health, Austin Hospital, and Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia | en |
dc.identifier.affiliation | Cardiology | en |
dc.identifier.affiliation | Division of Obstetrics and Gynaecology, KK Women's and Children's Hospital, Singapore, Singapore | en |
dc.identifier.affiliation | School of Computing, National University of Singapore, Singapore, Singapore | en |
dc.identifier.doi | 10.1038/s41551-020-00626-4 | en |
dc.type.content | Text | en |
dc.identifier.orcid | 0000-0003-0655-885X | en |
dc.identifier.orcid | 0000-0002-4042-4719 | en |
dc.identifier.orcid | 0000-0002-6752-797X | en |
dc.identifier.orcid | 0000-0002-1052-4583 | en |
dc.identifier.orcid | 0000-0003-4407-6907 | en |
dc.identifier.orcid | 0000-0003-2972-5227 | en |
dc.identifier.orcid | 0000-0003-2749-7793 | en |
dc.identifier.orcid | 0000-0003-1863-7539 | en |
dc.identifier.orcid | 0000-0003-2821-1451 | en |
dc.identifier.orcid | 0000-0002-4142-8893 | en |
dc.identifier.orcid | 0000-0002-9636-388X | en |
dc.identifier.orcid | 0000-0002-8448-1264 | en |
dc.identifier.pubmedid | 33046867 | - |
local.name.researcher | Burrell, Louise M | |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Journal Article | - |
crisitem.author.dept | Medical Oncology | - |
crisitem.author.dept | Olivia Newton-John Cancer Wellness and Research Centre | - |
crisitem.author.dept | Cardiology | - |
crisitem.author.dept | General Medicine | - |
crisitem.author.dept | Medicine (University of Melbourne) | - |
crisitem.author.dept | Cardiology | - |
Appears in Collections: | Journal articles |
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.