Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/20685
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrellana, Laura-
dc.contributor.authorThorne, Amy H-
dc.contributor.authorLema, Rafael-
dc.contributor.authorGustavsson, Johan-
dc.contributor.authorParisian, Alison D-
dc.contributor.authorHospital, Adam-
dc.contributor.authorCordeiro, Tiago N-
dc.contributor.authorBernadó, Pau-
dc.contributor.authorScott, Andrew M-
dc.contributor.authorBrun-Heath, Isabelle-
dc.contributor.authorLindahl, Erik-
dc.contributor.authorCavenee, Webster K-
dc.contributor.authorFurnari, Frank B-
dc.contributor.authorOrozco, Modesto-
dc.date2019-05-14-
dc.date.accessioned2019-04-30T23:55:25Z-
dc.date.available2019-04-30T23:55:25Z-
dc.date.issued2019-04-26-
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America 2019; 116(20): 10009-10018-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/20685-
dc.description.abstractEpidermal growth factor receptor (EGFR) signaling is initiated by a large ligand-favored conformational change of the extracellular domain (ECD) from a closed, self-inhibited tethered monomer, to an open untethered state, which exposes a loop required for strong dimerization and activation. In glioblastomas (GBMs), structurally heterogeneous missense and deletion mutations concentrate at the ECD for unclear reasons. We explore the conformational impact of GBM missense mutations, combining elastic network models (ENMs) with multiple molecular dynamics (MD) trajectories. Our simulations reveal that the main missense class, located at the I-II interface away from the self-inhibitory tether, can unexpectedly favor spontaneous untethering to a compact intermediate state, here validated by small-angle X-ray scattering (SAXS). Significantly, such intermediate is characterized by the rotation of a large ECD fragment (N-TR1), deleted in the most common GBM mutation, EGFRvIII, and that makes accessible a cryptic epitope characteristic of cancer cells. This observation suggested potential structural equivalence of missense and deletion ECD changes in GBMs. Corroborating this hypothesis, our FACS, in vitro, and in vivo data demonstrate that entirely different ECD variants all converge to remove N-TR1 steric hindrance from the 806-epitope, which we show is allosterically coupled to an intermediate kinase and hallmarks increased oncogenicity. Finally, the detected extraintracellular coupling allows for synergistic cotargeting of the intermediate with mAb806 and inhibitors, which is proved herein.-
dc.language.isoeng-
dc.subjectcancer-
dc.subjectcryptoepitope-
dc.subjectintermediate-
dc.subjectmutational heterogeneity-
dc.subjectstructural convergence-
dc.titleOncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope.-
dc.typeJournal Article-
dc.identifier.journaltitleProceedings of the National Academy of Sciences of the United States of America-
dc.identifier.affiliationScience for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden;. Department of Biochemistry and Biophysics, Stockholm University, 11419 Stockholm, Sweden-
dc.identifier.affiliationLudwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093-0660-
dc.identifier.affiliationInstitute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain-
dc.identifier.affiliationDepartment of Computational Science and Technology, KTH Royal Institute of Technology, 11428 Stockholm, Sweden-
dc.identifier.affiliationLudwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093-0660-
dc.identifier.affiliationInstitute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain-
dc.identifier.affiliationInstituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal-
dc.identifier.affiliationCentre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France-
dc.identifier.affiliationInstitute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain-
dc.identifier.affiliationLudwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093-0660-
dc.identifier.affiliationDepartment of Biochemistry and Biomedicine, University of Barcelona, 08028 Barcelona, Catalonia, Spain-
dc.identifier.affiliationSchool of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australiaen
dc.identifier.affiliationScience for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Swedenen
dc.identifier.affiliationOlivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australiaen
dc.identifier.affiliationDepartment of Biochemistry and Biophysics, Stockholm University, 11419 Stockholm, Swedenen
dc.identifier.doi10.1073/pnas.1821442116-
dc.identifier.orcid0000-0003-1927-555X-
dc.identifier.orcid0000-0003-2663-3220-
dc.identifier.orcid0000-0003-3804-9179-
dc.identifier.orcid0000-0003-1909-4361-
dc.identifier.orcid0000-0002-6656-295X-
dc.identifier.pubmedid31028138-
dc.type.austinJournal Article-
local.name.researcherScott, Andrew M
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptMolecular Imaging and Therapy-
crisitem.author.deptOlivia Newton-John Cancer Research Institute-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

28
checked on Oct 1, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.