Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/19688
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGelfman, Sahar-
dc.contributor.authorWang, Quanli-
dc.contributor.authorLu, Yi-Fan-
dc.contributor.authorHall, Diana-
dc.contributor.authorBostick, Christopher D-
dc.contributor.authorDhindsa, Ryan-
dc.contributor.authorHalvorsen, Matt-
dc.contributor.authorMcSweeney, K Melodi-
dc.contributor.authorCotterill, Ellese-
dc.contributor.authorEdinburgh, Tom-
dc.contributor.authorBeaumont, Michael A-
dc.contributor.authorFrankel, Wayne N-
dc.contributor.authorPetrovski, Slavé-
dc.contributor.authorAllen, Andrew S-
dc.contributor.authorBoland, Michael J-
dc.contributor.authorGoldstein, David B-
dc.contributor.authorEglen, Stephen J-
dc.date2018-10-01-
dc.date.accessioned2018-10-23T22:28:42Z-
dc.date.available2018-10-23T22:28:42Z-
dc.date.issued2018-10-
dc.identifier.citationPLoS computational biology 2018; 14(10): e1006506-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/19688-
dc.description.abstractHere we present an open-source R package 'meaRtools' that provides a platform for analyzing neuronal networks recorded on Microelectrode Arrays (MEAs). Cultured neuronal networks monitored with MEAs are now being widely used to characterize in vitro models of neurological disorders and to evaluate pharmaceutical compounds. meaRtools provides core algorithms for MEA spike train analysis, feature extraction, statistical analysis and plotting of multiple MEA recordings with multiple genotypes and treatments. meaRtools functionality covers novel solutions for spike train analysis, including algorithms to assess electrode cross-correlation using the spike train tiling coefficient (STTC), mutual information, synchronized bursts and entropy within cultured wells. Also integrated is a solution to account for bursts variability originating from mixed-cell neuronal cultures. The package provides a statistical platform built specifically for MEA data that can combine multiple MEA recordings and compare extracted features between different genetic models or treatments. We demonstrate the utilization of meaRtools to successfully identify epilepsy-like phenotypes in neuronal networks from Celf4 knockout mice. The package is freely available under the GPL license (GPL> = 3) and is updated frequently on the CRAN web-server repository. The package, along with full documentation can be downloaded from: https://cran.r-project.org/web/packages/meaRtools/.-
dc.language.isoeng-
dc.titlemeaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays.-
dc.typeJournal Article-
dc.identifier.journaltitlePLoS computational biology-
dc.identifier.affiliationDepartment of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australiaen
dc.identifier.affiliationDepartment of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australiaen
dc.identifier.affiliationCambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdomen
dc.identifier.affiliationDepartment of Genetics and Development, Columbia University Medical Center, New York, NY, United States of Americaen
dc.identifier.affiliationSimcere Diagnostics Co, Ltd, Nanjing, Chinaen
dc.identifier.affiliationDepartment of Biology, Westmont College, Santa Barbara, CA, United States of Americaen
dc.identifier.affiliationDepartment of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of Americaen
dc.identifier.affiliationUniversity Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of Americaen
dc.identifier.affiliationAxion BioSystems, Inc., Atlanta, GA, United States of Americaen
dc.identifier.affiliationDepartment of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States of Americaen
dc.identifier.affiliationDepartment of Neurology, Columbia University, New York, NY, United States of Americaen
dc.identifier.affiliationInstitute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of Americaen
dc.identifier.doi10.1371/journal.pcbi.1006506-
dc.identifier.orcid0000-0002-4727-7862-
dc.identifier.orcid0000-0001-5462-4407-
dc.identifier.orcid0000-0002-8965-0813-
dc.identifier.orcid0000-0002-6707-2418-
dc.identifier.orcid0000-0003-4760-9748-
dc.identifier.orcid0000-0002-1527-961X-
dc.identifier.orcid0000-0001-8607-8025-
dc.identifier.pubmedid30273353-
dc.type.austinJournal Article-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

20
checked on Nov 22, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.