Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaines, Sarah L-
dc.contributor.authorHowden, Benjamin P-
dc.contributor.authorHeffernan, Helen-
dc.contributor.authorStinear, Timothy P-
dc.contributor.authorCarter, Glen P-
dc.contributor.authorSeemann, Torsten-
dc.contributor.authorKwong, Jason C-
dc.contributor.authorRitchie, Stephen R-
dc.contributor.authorWilliamson, Deborah A-
dc.identifier.citationAntimicrobial Agents and Chemotherapy 2016; 60(4): 2359-65en_US
dc.description.abstractThe prevalence of fusidic acid (FA) resistance amongStaphylococcus aureusstrains in New Zealand (NZ) is among the highest reported globally, with a recent study describing a resistance rate of approximately 28%. Three FA-resistantS. aureusclones (ST5 MRSA, ST1 MSSA, and ST1 MRSA) have emerged over the past decade and now predominate in NZ, and in all three clones FA resistance is mediated by thefusCgene. In particular, ST5 MRSA has rapidly become the dominant MRSA clone in NZ, although the origin of FA-resistant ST5 MRSA has not been explored, and the genetic context offusCin FA-resistant NZ isolates is unknown. To better understand the rapid emergence of FA-resistantS. aureus, we used population-based comparative genomics to characterize a collection of FA-resistant and FA-susceptible isolates from NZ. FA-resistant NZ ST5 MRSA displayed minimal genetic diversity and represented a phylogenetically distinct clade within a global population model of clonal complex 5 (CC5)S. aureus In all lineages,fusCwas invariably located within staphylococcal cassette chromosome (SCC) elements, suggesting that SCC-mediated horizontal transfer is the primary mechanism offusCdissemination. The genotypic association offusCwithmecAhas important implications for the emergence of MRSA clones in populations with high usage of fusidic acid. In addition, we found thatfusCwas colocated with a recently described virulence factor (tirS) in dominant NZS. aureusclones, suggesting a fitness advantage. This study points to the likely molecular mechanisms responsible for the successful emergence and spread of FA-resistantS. aureus.en_US
dc.titleRapid Emergence and Evolution of Staphylococcus aureus Clones Harboring fusC-Containing Staphylococcal Cassette Chromosome Elements.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleAntimicrobial Agents and Chemotherapyen_US
dc.identifier.affiliationDoherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australiaen_US
dc.identifier.affiliationMicrobiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Australiaen_US
dc.identifier.affiliationDepartment of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australiaen_US
dc.identifier.affiliationInstitute of Environmental Science and Research, Wellington, New Zealanden_US
dc.identifier.affiliationVictorian Life Sciences Computation Initiative, The University of Melbourne, Melbourne, Australiaen_US
dc.identifier.affiliationSchool of Medical Sciences, University of Auckland, Auckland, New Zealanden_US
dc.type.austinJournal Article-
item.fulltextNo Fulltext-
item.openairetypeJournal Article-
item.cerifentitytypePublications- Diseases- Diseases-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

checked on Jun 7, 2023

Google ScholarTM


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.