Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/16876
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Warne, Charles D | - |
dc.contributor.author | Zaloumis, Sophie G | - |
dc.contributor.author | Bertalli, Nadine A | - |
dc.contributor.author | Delatycki, Martin B | - |
dc.contributor.author | Nicoll, Amanda J | - |
dc.contributor.author | McLaren, Christine E | - |
dc.contributor.author | Hopper, John L | - |
dc.contributor.author | Giles, Graham G | - |
dc.contributor.author | Anderson, Gregory J | - |
dc.contributor.author | Olynyk, John K | - |
dc.contributor.author | Powell, Lawrie W | - |
dc.contributor.author | Allen, Katrina J | - |
dc.contributor.author | Gurrin, Lyle C | - |
dc.contributor.author | The HealthIron Study Investigators | - |
dc.date.accessioned | 2017-09-26T23:28:33Z | - |
dc.date.available | 2017-09-26T23:28:33Z | - |
dc.date.issued | 2017-04 | - |
dc.identifier.citation | Journal of Gastroenterology and Hepatology 2017; 32(4): 797-802 | en_US |
dc.identifier.uri | https://ahro.austin.org.au/austinjspui/handle/1/16876 | - |
dc.description.abstract | BACKGROUND AND AIM: Women who are homozygous for the p.C282Y mutation in the HFE gene are at much lower risk of iron overload-related disease than p.C282Y homozygous men, presumably because of the iron-depleting effects of menstruation and pregnancy. We used data from a population cohort study to model the impact of menstruation cessation at menopause on serum ferritin (SF) levels in female p.C282Y homozygotes, with p.C282Y/p.H63D simple or compound heterozygotes and those with neither p.C282Y nor p.H63D mutations (HFE wild types) as comparison groups. METHODS: A sample of the Melbourne Collaborative Cohort Study was selected for the "HealthIron" study (n = 1438) including all HFE p.C282Y homozygotes plus a random sample stratified by HFE-genotype (p.C282Y and p.H63D). The relationship between the natural logarithm of SF and time since menopause was examined using linear mixed models incorporating spline smoothing. RESULTS: For p.C282Y homozygotes, SF increased by a factor of 3.6 (95% CI (1.8, 7.0), P < 0.001) during the first 10 years postmenopause, after which SF continued to increase but at less than half the previous rate. In contrast, SF profiles for other HFE genotype groups increase more gradually and did not show a distinction between premenopausal and postmenopausal SF levels. Only p.C282Y homozygotes had predicted SF exceeding 200 μg/L postmenopause, but the projected SF did not increase the risk of iron overload-related disease. CONCLUSIONS: These data provide the first documented evidence that physiological blood loss is a major factor in determining the marked gender difference in expression of p.C282Y homozygosity. | en_US |
dc.subject | HFE p.C282Y homozygosity | en_US |
dc.subject | Hereditary hemochromatosis | en_US |
dc.subject | Iron accumulation | en_US |
dc.subject | Iron overload-related disease | en_US |
dc.subject | Menopause | en_US |
dc.subject | Women's health | en_US |
dc.title | HFE p.C282Y homozygosity predisposes to rapid serum ferritin rise after menopause: a genotype-stratified cohort study of hemochromatosis in Australian women | en_US |
dc.type | Journal Article | en_US |
dc.identifier.journaltitle | Journal of Gastroenterology and Hepatology | en_US |
dc.identifier.affiliation | Department of Epidemiology, University of California, Irvine, California, USA | en |
dc.identifier.affiliation | Austin Health, Heidelberg, Victoria, Australia | en_US |
dc.identifier.affiliation | Product Development, Roche Products Ltd, Welwyn Garden City, Hertfordshire, UK | en_US |
dc.identifier.affiliation | Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia | en_US |
dc.identifier.affiliation | Population Health, Murdoch Childrens Research Institute, Parkville, Victoria, Australia | en_US |
dc.identifier.affiliation | Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia | en_US |
dc.identifier.affiliation | Department of Gastroenterology, Eastern Health and Melbourne Health, Monash University, Melbourne, Victoria, Australia | en_US |
dc.identifier.affiliation | Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia | en_US |
dc.identifier.affiliation | QIMR Berghofer Medical Research Institute and The University of Queensland, Brisbane, Queensland, Australia | en_US |
dc.identifier.affiliation | Department of Gastroenterology, Fiona Stanley and Fremantle Hospitals, Murdoch, Western Australia, Australia | en_US |
dc.identifier.affiliation | School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia | en_US |
dc.identifier.affiliation | School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia | en_US |
dc.identifier.affiliation | The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia | en_US |
dc.identifier.pubmeduri | https://pubmed.ncbi.nlm.nih.gov/27784128 | en_US |
dc.identifier.doi | 10.1111/jgh.13621 | en_US |
dc.type.content | Text | en_US |
dc.type.austin | Journal Article | en_US |
local.name.researcher | Delatycki, Martin B | |
item.openairetype | Journal Article | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | Clinical Genetics | - |
Appears in Collections: | Journal articles |
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.