Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/13611
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCatimel, Ben
dc.contributor.authorScott, Andrew Men
dc.contributor.authorLee, Fook-Theanen
dc.contributor.authorHanai, Nen
dc.contributor.authorRitter, Gen
dc.contributor.authorWelt, Sen
dc.contributor.authorOld, Lloyd Jen
dc.contributor.authorBurgess, Antony Wen
dc.contributor.authorNice, Edouard Cen
dc.date.accessioned2015-05-16T03:29:54Z
dc.date.available2015-05-16T03:29:54Z
dc.date.issued1998-09-01en
dc.identifier.citationGlycobiology; 8(9): 927-38en
dc.identifier.govdoc9675226en
dc.identifier.otherPUBMEDen
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/13611en
dc.description.abstractWe describe a novel immobilization technique to investigate interactions between immobilized gangliosides (GD3, GM1, and GM2) and their respective antibodies, antibody fragments, or binding partners using an optical biosensor. Immobilization was performed by direct injection onto a carboxymethyldextran sensor chip and did not require derivatization of the sensor surface or the ganglioside. The ganglioside appeared to bind to the sensor surface by hydrophobic interaction, leaving the carbohydrate epitope available for antibody or, in the case of GM1, cholera toxin binding. The carboxyl group of the dextran chains on the sensor surface did not appear to be involved in the immobilization as evidenced by equivalent levels of immobilization following conversion of the carboxyl groups into acyl amino esters, but rather the dextran layer provided a hydrophilic coverage of the sensor chip which was essential to prevent nonspecific binding. This technique gave better reactivity and specificity for anti-ganglioside monoclonal antibodies (anti-GD3: KM871, KM641, R24; and anti-GM2: KM966) than immobilization by hydrophobic interaction onto a gold sensor surface or photoactivated cross-linking onto carboxymethydextran. This rapid immobilization procedure has facilitated detailed kinetic analysis of ganglioside/antibody interactions, with the surface remaining viable for a large number of cycles (>125). Kinetic constants were determined from the biosensor data using linear regression, nonlinear least squares and equilibrium analysis. The values of kd, ka, and KAobtained by nonlinear analysis (KAKM871 = 1.05, KM641 = 1.66, R24 = 0.14, and KM966 = 0.65 x 10(7) M-1) were essentially independent of concentration and showed good agreement with data obtained by other analytical methods.en
dc.language.isoenen
dc.subject.otherAntibodies, Monoclonalen
dc.subject.otherAntibody Affinityen
dc.subject.otherAntibody Specificityen
dc.subject.otherBiosensing Techniquesen
dc.subject.otherCholera Toxin.metabolismen
dc.subject.otherG(M1) Ganglioside.chemistry.immunologyen
dc.subject.otherG(M2) Ganglioside.chemistry.immunologyen
dc.subject.otherGangliosides.chemistry.immunologyen
dc.subject.otherLeast-Squares Analysisen
dc.subject.otherOptics and Photonicsen
dc.subject.otherSurface Propertiesen
dc.titleDirect immobilization of gangliosides onto gold-carboxymethyldextran sensor surfaces by hydrophobic interaction: applications to antibody characterization.en
dc.typeJournal Articleen
dc.identifier.journaltitleGlycobiologyen
dc.identifier.affiliationLudwig Institute for Cancer Research, Melbourne, Australia, Tumour Targeting Program, Ludwig Institute for Cancer Research and Austin Hospital, Heidelberg, Victoria, Australiaen
dc.description.pages927-38en
dc.relation.urlhttps://pubmed.ncbi.nlm.nih.gov/9675226en
dc.type.austinJournal Articleen
local.name.researcherScott, Andrew M
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.fulltextNo Fulltext-
crisitem.author.deptMolecular Imaging and Therapy-
crisitem.author.deptOlivia Newton-John Cancer Research Institute-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

18
checked on Nov 3, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.