Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/11633
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Wei-
dc.contributor.authorCameron, David R-
dc.contributor.authorDavies, John K-
dc.contributor.authorKostoulias, Xenia-
dc.contributor.authorStepnell, Justin-
dc.contributor.authorTuck, Kellie L-
dc.contributor.authorYeaman, Michael R-
dc.contributor.authorPeleg, Anton Y-
dc.contributor.authorStinear, Timothy P-
dc.contributor.authorHowden, Benjamin P-
dc.date.accessioned2015-05-16T01:14:58Z
dc.date.available2015-05-16T01:14:58Z
dc.date.issued2012-12-18-
dc.identifier.citationThe Journal of Infectious Diseases 2012; 207(6): 929-39en_US
dc.identifier.otherPUBMEDen
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/11633en
dc.description.abstractThe occurrence of mutations in methicillin-resistant Staphylococcus aureus (MRSA) during persistent infection leads to antimicrobial resistance but may also impact host-pathogen interactions. Here, we investigate the host-pathogen consequences of 2 mutations arising in clinical MRSA during persistent infection: RpoB H₄₈₁Y, which is linked to rifampicin resistance, and RelA F₁₂₈Y, which is associated with an active stringent response. Allelic exchange experiments showed that both mutations cause global transcriptional changes, leading to upregulation of capsule production, with attenuated virulence in a murine bacteremia model and reduced susceptibility to both antimicrobial peptides and whole-blood killing. Disruption of capsule biosynthesis reversed these impacts on innate immune function. These data clearly link MRSA persistence and reduced virulence to the same mechanisms that alter antimicrobial susceptibility. Our study highlights the wider consequences of suboptimal antimicrobial use, where drug resistance and immune escape mechanisms coevolve, thus increasing the likelihood of treatment failure.en_US
dc.language.isoenen
dc.subject.otherAnimalsen
dc.subject.otherBacterial Capsules.genetics.immunology.metabolismen
dc.subject.otherDNA-Directed RNA Polymerases.geneticsen
dc.subject.otherDrug Resistance, Bacterial.geneticsen
dc.subject.otherFemaleen
dc.subject.otherHost-Pathogen Interactions.genetics.immunologyen
dc.subject.otherHumansen
dc.subject.otherImmunity, Innateen
dc.subject.otherMethicillin-Resistant Staphylococcus aureus.drug effects.genetics.pathogenicityen
dc.subject.otherMiceen
dc.subject.otherMice, Inbred BALB Cen
dc.subject.otherPhenotypeen
dc.subject.otherPolymorphism, Single Nucleotideen
dc.subject.otherRifampinen
dc.subject.otherStaphylococcal Infections.immunologyen
dc.subject.otherTranscription Factor RelA.geneticsen
dc.subject.otherTranscription, Genetic.geneticsen
dc.subject.otherUp-Regulationen
dc.subject.otherVirulence.geneticsen
dc.subject.otheralpha-Defensins.pharmacologyen
dc.subject.otherbeta-Defensins.pharmacologyen
dc.titleThe RpoB H₄₈₁Y rifampicin resistance mutation and an active stringent response reduce virulence and increase resistance to innate immune responses in Staphylococcus aureus.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleThe Journal of Infectious Diseasesen_US
dc.identifier.affiliationUniversity of Melbourne, Australiaen_US
dc.identifier.affiliationInfectious Diseasesen_US
dc.identifier.doi10.1093/infdis/jis772en_US
dc.description.pages929-39en
dc.relation.urlhttps://pubmed.ncbi.nlm.nih.gov/23255563en
dc.type.contentTexten_US
dc.type.austinJournal Articleen
local.name.researcherHowden, Benjamin P
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeJournal Article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptInfectious Diseases-
crisitem.author.deptMicrobiology-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

24
checked on Sep 27, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.