Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/11170
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVillemagne, Victor L-
dc.contributor.authorO'Keefe, Graeme J-
dc.contributor.authorMulligan, Rachel S-
dc.contributor.authorRowe, Christopher C-
dc.date.accessioned2015-05-16T00:45:28Z
dc.date.available2015-05-16T00:45:28Z
dc.date.issued2011-
dc.identifier.citationMethods in Molecular Biology (clifton, N.j.); 680(): 201-25en
dc.identifier.otherPUBMEDen
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/11170en
dc.description.abstractAlzheimer's disease (AD), an irreversible, progressive neurodegenerative disorder clinically characterized by memory loss and cognitive decline, is the leading cause of dementia in the elderly, leading invariably to death within 7-10 years after diagnosis. In vivo amyloid imaging with positron emission tomography (PET) is allowing new insights into β-amyloid (Aβ) deposition in the brain, facilitating research into the causes, diagnosis, and future treatment of dementias, where Aβ may play a role. Non-invasive quantification of Aβ burden in the brain with PET has proven useful in the early and differential diagnosis of dementias, showing significantly higher retention in grey matter of AD patients when compared with healthy controls (HC) or patients with frontotemporal lobe degeneration (FTLD). With the advent of new therapeutic strategies aimed at reducing Aβ burden in the brain to potentially prevent or delay functional and irreversible cognitive loss, there is increased interest in developing agents that allow assessment of Aβ burden in vivo. A key aspect for Aβ burden quantification is the application of compartmental or graphical analyses to the kinetic data in order to obtain quantitative and reproducible statements that allow comparison with other nosological groups, correlation with cognitive or biological parameters, and selection, monitoring, and follow-up of individuals in disease modifying therapeutic trials. It is also a necessary step in the validation of simplified approaches that could be applied in routine clinical settings. With the availability of novel amyloid imaging agents radiolabeled with either (11)C (half-life 20 min) or (18)F (half-life 110 min), a description of different image acquisition approaches is provided.en
dc.language.isoenen
dc.subject.otherAlzheimer Disease.pathologyen
dc.subject.otherAmyloid.ultrastructureen
dc.subject.otherCarbon Radioisotopesen
dc.subject.otherFluorine Radioisotopesen
dc.subject.otherImage Processing, Computer-Assisted.methodsen
dc.subject.otherIsotope Labeling.methodsen
dc.subject.otherMagnetic Resonance Imaging.methodsen
dc.subject.otherPositron-Emission Tomography.methodsen
dc.subject.otherSoftwareen
dc.titleQuantitative approaches to amyloid imaging.en
dc.typeJournal Articleen
dc.identifier.journaltitleMethods in molecular biology (Clifton, N.J.)en
dc.identifier.affiliationDepartment of Nuclear Medicine, Centre for PET, Austin Health, Heidelberg, VIC 3084, Australiaen
dc.identifier.doi10.1007/978-1-60761-901-7_14en
dc.description.pages201-25en
dc.relation.urlhttps://pubmed.ncbi.nlm.nih.gov/21153383en
dc.type.contentTexten
dc.type.austinJournal Articleen
local.name.researcherMulligan, Rachel S
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.deptMolecular Imaging and Therapy-
crisitem.author.deptMolecular Imaging and Therapy-
crisitem.author.deptMolecular Imaging and Therapy-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

54
checked on Nov 24, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.