Austin Health

Title
Plasma proteomic associations with genetics and health in the UK Biobank.
Publication Date
2023-10
Author(s)
Sun, Benjamin B
Chiou, Joshua
Traylor, Matthew
Benner, Christian
Hsu, Yi-Hsiang
Richardson, Tom G
Surendran, Praveen
Mahajan, Anubha
Robins, Chloe
Vasquez-Grinnell, Steven G
Hou, Liping
Kvikstad, Erika M
Burren, Oliver S
Davitte, Jonathan
Ferber, Kyle L
Gillies, Christopher E
Hedman, Åsa K
Hu, Sile
Lin, Tinchi
Mikkilineni, Rajesh
Pendergrass, Rion K
Pickering, Corran
Prins, Bram
Baird, Denis
Chen, Chia-Yen
Ward, Lucas D
Deaton, Aimee M
Welsh, Samantha
Willis, Carissa M
Lehner, Nick
Arnold, Matthias
Wörheide, Maria A
Suhre, Karsten
Kastenmüller, Gabi
Sethi, Anurag
Cule, Madeleine
Raj, Anil
Burkitt-Gray, Lucy
Melamud, Eugene
Black, Mary Helen
Fauman, Eric B
Howson, Joanna M M
Kang, Hyun Min
McCarthy, Mark I
Nioi, Paul
Petrovski, Slavé
Scott, Robert A
Smith, Erin N
Szalma, Sándor
Waterworth, Dawn M
Mitnaul, Lyndon J
Szustakowski, Joseph D
Gibson, Bradford W
Miller, Melissa R
Whelan, Christopher D
Type of document
Journal Article
OrcId
0000-0001-6347-2281
0000-0002-4618-0647
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
0000-0001-5585-3420
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
0000-0001-5098-6902
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
0000-0002-8017-809X
0000-0003-0365-3077
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
0000-0002-4666-0923
#PLACEHOLDER_PARENT_METADATA_VALUE#
0000-0001-9638-3912
#PLACEHOLDER_PARENT_METADATA_VALUE#
0000-0003-3295-3116
0000-0002-7400-5643
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
0000-0002-5943-6189
#PLACEHOLDER_PARENT_METADATA_VALUE#
0000-0002-9739-0249
0000-0001-7618-0050
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
#PLACEHOLDER_PARENT_METADATA_VALUE#
0000-0002-1527-961X
DOI
10.1038/s41586-023-06592-6
Abstract
The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.
Link
Citation
Nature 2023-10; 622(7982)
Jornal Title
Nature
ISSN
1476-4687

Files:

NameSizeformatDescriptionLink