Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/33615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeek, Claire L-
dc.contributor.authorStewart, Zoe A-
dc.contributor.authorFeig, Denice S-
dc.contributor.authorFurse, Samuel-
dc.contributor.authorNeoh, Sandra L-
dc.contributor.authorKoulman, Albert-
dc.contributor.authorMurphy, Helen R-
dc.date2023-
dc.date.accessioned2023-08-30T07:48:13Z-
dc.date.available2023-08-30T07:48:13Z-
dc.date.issued2023-11-
dc.identifier.citationDiabetologia 2023-11; 66(11)en_US
dc.identifier.issn1432-0428-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/33615-
dc.description.abstractType 1 diabetes in pregnancy is associated with suboptimal pregnancy outcomes, attributed to maternal hyperglycaemia and offspring hyperinsulinism (quantifiable by cord blood C-peptide). We assessed metabolomic patterns associated with risk factors (maternal hyperglycaemia, diet, BMI, weight gain) and perinatal complications (pre-eclampsia, large for gestational age [LGA], neonatal hypoglycaemia, hyperinsulinism) in the Continuous Glucose Monitoring in Women with Type 1 Diabetes in Pregnancy Trial (CONCEPTT). A total of 174 CONCEPTT participants gave ≥1 non-fasting serum sample for the biorepository at 12 gestational weeks (147 women), 24 weeks (167 women) and 34 weeks (160 women) with cord blood from 93 infants. Results from untargeted metabolite analysis (ultrahigh performance LC-MS) are presented as adjusted logistic/linear regression of maternal and cord blood metabolites, risk factors and perinatal complications using a modified Bonferroni limit of significance for dependent variables. Maternal continuous glucose monitoring time-above-range (but not BMI or excessive gestational weight gain) was associated with increased triacylglycerols in maternal blood and increased carnitines in cord blood. LGA, adiposity, neonatal hypoglycaemia and offspring hyperinsulinism showed distinct metabolite profiles. LGA was associated with increased carnitines, steroid hormones and lipid metabolites, predominantly in the third trimester. However, neonatal hypoglycaemia and offspring hyperinsulinism were both associated with metabolite changes from the first trimester, featuring triacylglycerols or dietary phenols. Pre-eclampsia was associated with increased abundance of phosphatidylethanolamines, a membrane phospholipid, at 24 weeks. Altered lipid metabolism is a key pathophysiological feature of type 1 diabetes pregnancy. New strategies for optimising maternal diet and insulin dosing from the first trimester are needed to improve pregnancy outcomes in type 1 diabetes.en_US
dc.language.isoeng-
dc.subjectCord blooden_US
dc.subjectLGAen_US
dc.subjectLipidomicsen_US
dc.subjectMetabolomicsen_US
dc.subjectNeonatal hypoglycaemiaen_US
dc.subjectPre-eclampsiaen_US
dc.subjectPredictionen_US
dc.subjectPregnancyen_US
dc.subjectPregnancy complicationsen_US
dc.subjectPregnancy in people with diabetesen_US
dc.subjectPregnancy outcomeen_US
dc.subjectType 1 diabetesen_US
dc.titleMetabolomic insights into maternal and neonatal complications in pregnancies affected by type 1 diabetes.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleDiabetologiaen_US
dc.identifier.affiliationWellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.en_US
dc.identifier.affiliationDepartment of Cardiovascular Sciences, University of Leicester, Leicester, UK.en_US
dc.identifier.affiliationMount Sinai Hospital, Sinai Health System, New York, NY, USA.en_US
dc.identifier.affiliationCambridge University Hospitals NHS Foundation Trust, Cambridge, UK.;Core Metabolomics and Lipidomics Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.en_US
dc.identifier.affiliationEndocrinologyen_US
dc.identifier.affiliationCambridge University Hospitals NHS Foundation Trust, Cambridge, UK.;Core Metabolomics and Lipidomics Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.en_US
dc.identifier.affiliationNorwich Medical School, University of East Anglia, Norwich, UK.en_US
dc.identifier.affiliationCambridge University Hospitals NHS Foundation Trust, Cambridge, UK.en_US
dc.identifier.affiliationDepartment of Medicine, University of Toronto, Toronto, ON, Canada.en_US
dc.identifier.affiliationLunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.en_US
dc.identifier.doi10.1007/s00125-023-05989-2en_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0002-4176-8329en_US
dc.identifier.orcid0000-0003-4267-2051en_US
dc.identifier.orcid0000-0001-9387-7079en_US
dc.identifier.orcid0000-0001-9998-051Xen_US
dc.identifier.orcid0000-0002-5489-0614en_US
dc.identifier.pubmedid37615689-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.deptEndocrinology-
crisitem.author.deptMedicine (University of Melbourne)-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

44
checked on Nov 30, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.