Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/31921
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJoyal-Desmarais, Keven-
dc.contributor.authorStojanovic, Jovana-
dc.contributor.authorKennedy, Eric B-
dc.contributor.authorEnticott, Joanne C-
dc.contributor.authorBoucher, Vincent Gosselin-
dc.contributor.authorVo, Hung-
dc.contributor.authorKošir, Urška-
dc.contributor.authorLavoie, Kim L-
dc.contributor.authorBacon, Simon L-
dc.date2022-
dc.date.accessioned2023-01-12T05:14:29Z-
dc.date.available2023-01-12T05:14:29Z-
dc.date.issued2022-11-
dc.identifier.citationEuropean Journal of Epidemiology 2022en_US
dc.identifier.issn1573-7284-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/31921-
dc.description.abstractCOVID-19 research has relied heavily on convenience-based samples, which-though often necessary-are susceptible to important sampling biases. We begin with a theoretical overview and introduction to the dynamics that underlie sampling bias. We then empirically examine sampling bias in online COVID-19 surveys and evaluate the degree to which common statistical adjustments for demographic covariates successfully attenuate such bias. This registered study analysed responses to identical questions from three convenience and three largely representative samples (total N = 13,731) collected online in Canada within the International COVID-19 Awareness and Responses Evaluation Study ( www.icarestudy.com ). We compared samples on 11 behavioural and psychological outcomes (e.g., adherence to COVID-19 prevention measures, vaccine intentions) across three time points and employed multiverse-style analyses to examine how 512 combinations of demographic covariates (e.g., sex, age, education, income, ethnicity) impacted sampling discrepancies on these outcomes. Significant discrepancies emerged between samples on 73% of outcomes. Participants in the convenience samples held more positive thoughts towards and engaged in more COVID-19 prevention behaviours. Covariates attenuated sampling differences in only 55% of cases and increased differences in 45%. No covariate performed reliably well. Our results suggest that online convenience samples may display more positive dispositions towards COVID-19 prevention behaviours being studied than would samples drawn using more representative means. Adjusting results for demographic covariates frequently increased rather than decreased bias, suggesting that researchers should be cautious when interpreting adjusted findings. Using multiverse-style analyses as extended sensitivity analyses is recommended.en_US
dc.language.isoeng-
dc.subjectCOVID-19en_US
dc.subjectCollider biasen_US
dc.subjectCovariate adjustmenten_US
dc.subjectMultiverse analysisen_US
dc.subjectSampling biasen_US
dc.subjectSelection biasen_US
dc.titleHow well do covariates perform when adjusting for sampling bias in online COVID-19 research? Insights from multiverse analyses.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleEuropean Journal of Epidemiologyen_US
dc.identifier.affiliationDepartment of Health, Kinesiology and Applied Physiology, Concordia Universityen_US
dc.identifier.affiliationMontreal Behavioural Medicine Centre, CIUSSS-NIM, Montreal, Canada.en_US
dc.identifier.affiliationDisaster and Emergency Management, York University, Toronto, Canada.en_US
dc.identifier.affiliationDepartment of General Practice, Monash University, Melbourne, Australia.en_US
dc.identifier.affiliationSchool of Kinesiology, University of British Columbia, Vancouver, BC, Canada.en_US
dc.identifier.affiliationAustin Healthen_US
dc.identifier.doi10.1007/s10654-022-00932-yen_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0003-0657-8367en_US
dc.identifier.orcid0000-0002-3984-5241en_US
dc.identifier.orcid0000-0003-0056-1521en_US
dc.identifier.orcid0000-0002-4480-5690en_US
dc.identifier.orcid0000-0002-3030-6022en_US
dc.identifier.orcid0000-0003-2132-4090en_US
dc.identifier.orcid0000-0003-2606-1357en_US
dc.identifier.orcid0000-0001-7075-0358en_US
dc.identifier.pubmedid36335560-
dc.description.volume37-
dc.description.issue12-
dc.description.startpage1233-
dc.description.endpage1250-
dc.subject.meshtermssecondaryCOVID-19/epidemiology-
dc.subject.meshtermssecondaryCOVID-19/prevention & control-
local.name.researcherVo, Hung
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
crisitem.author.deptClinical Analytics and Reporting-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

16
checked on Oct 1, 2023

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.