Please use this identifier to cite or link to this item: https://ahro.austin.org.au/austinjspui/handle/1/31785
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRaies, Arwa-
dc.contributor.authorTulodziecka, Ewa-
dc.contributor.authorStainer, James-
dc.contributor.authorMiddleton, Lawrence-
dc.contributor.authorDhindsa, Ryan S-
dc.contributor.authorHill, Pamela-
dc.contributor.authorEngkvist, Ola-
dc.contributor.authorHarper, Andrew R-
dc.contributor.authorPetrovski, Slavé-
dc.contributor.authorVitsios, Dimitrios-
dc.date2022-
dc.date.accessioned2023-01-12T03:02:37Z-
dc.date.available2023-01-12T03:02:37Z-
dc.date.issued2022-11-24-
dc.identifier.citationCommunications Biology 2022; 5(1)en_US
dc.identifier.issn2399-3642-
dc.identifier.urihttps://ahro.austin.org.au/austinjspui/handle/1/31785-
dc.description.abstractThe druggability of targets is a crucial consideration in drug target selection. Here, we adopt a stochastic semi-supervised ML framework to develop DrugnomeAI, which estimates the druggability likelihood for every protein-coding gene in the human exome. DrugnomeAI integrates gene-level properties from 15 sources resulting in 324 features. The tool generates exome-wide predictions based on labelled sets of known drug targets (median AUC: 0.97), highlighting features from protein-protein interaction networks as top predictors. DrugnomeAI provides generic as well as specialised models stratified by disease type or drug therapeutic modality. The top-ranking DrugnomeAI genes were significantly enriched for genes previously selected for clinical development programs (p value < 1 × 10-308) and for genes achieving genome-wide significance in phenome-wide association studies of 450 K UK Biobank exomes for binary (p value = 1.7 × 10-5) and quantitative traits (p value = 1.6 × 10-7). We accompany our method with a web application ( http://drugnomeai.public.cgr.astrazeneca.com ) to visualise the druggability predictions and the key features that define gene druggability, per disease type and modality.en_US
dc.language.isoeng-
dc.titleDrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets.en_US
dc.typeJournal Articleen_US
dc.identifier.journaltitleCommunications Biologyen_US
dc.identifier.affiliationCentre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.en_US
dc.identifier.affiliationEmerging Innovations, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA.en_US
dc.identifier.affiliationMolecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.en_US
dc.identifier.affiliationMedicine (University of Melbourne)en_US
dc.identifier.doi10.1038/s42003-022-04245-4en_US
dc.type.contentTexten_US
dc.identifier.orcid0000-0003-3952-7363en_US
dc.identifier.orcid0000-0002-8965-0813en_US
dc.identifier.orcid0000-0003-4970-6461en_US
dc.identifier.orcid0000-0002-8939-5445en_US
dc.identifier.pubmedid36434048-
dc.description.volume5-
dc.description.issue1-
dc.description.startpage1291-
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Journal articles
Show simple item record

Page view(s)

16
checked on Nov 28, 2024

Google ScholarTM

Check


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.