Please use this identifier to cite or link to this item:
https://ahro.austin.org.au/austinjspui/handle/1/31785
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Raies, Arwa | - |
dc.contributor.author | Tulodziecka, Ewa | - |
dc.contributor.author | Stainer, James | - |
dc.contributor.author | Middleton, Lawrence | - |
dc.contributor.author | Dhindsa, Ryan S | - |
dc.contributor.author | Hill, Pamela | - |
dc.contributor.author | Engkvist, Ola | - |
dc.contributor.author | Harper, Andrew R | - |
dc.contributor.author | Petrovski, Slavé | - |
dc.contributor.author | Vitsios, Dimitrios | - |
dc.date | 2022 | - |
dc.date.accessioned | 2023-01-12T03:02:37Z | - |
dc.date.available | 2023-01-12T03:02:37Z | - |
dc.date.issued | 2022-11-24 | - |
dc.identifier.citation | Communications Biology 2022; 5(1) | en_US |
dc.identifier.issn | 2399-3642 | - |
dc.identifier.uri | https://ahro.austin.org.au/austinjspui/handle/1/31785 | - |
dc.description.abstract | The druggability of targets is a crucial consideration in drug target selection. Here, we adopt a stochastic semi-supervised ML framework to develop DrugnomeAI, which estimates the druggability likelihood for every protein-coding gene in the human exome. DrugnomeAI integrates gene-level properties from 15 sources resulting in 324 features. The tool generates exome-wide predictions based on labelled sets of known drug targets (median AUC: 0.97), highlighting features from protein-protein interaction networks as top predictors. DrugnomeAI provides generic as well as specialised models stratified by disease type or drug therapeutic modality. The top-ranking DrugnomeAI genes were significantly enriched for genes previously selected for clinical development programs (p value < 1 × 10-308) and for genes achieving genome-wide significance in phenome-wide association studies of 450 K UK Biobank exomes for binary (p value = 1.7 × 10-5) and quantitative traits (p value = 1.6 × 10-7). We accompany our method with a web application ( http://drugnomeai.public.cgr.astrazeneca.com ) to visualise the druggability predictions and the key features that define gene druggability, per disease type and modality. | en_US |
dc.language.iso | eng | - |
dc.title | DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets. | en_US |
dc.type | Journal Article | en_US |
dc.identifier.journaltitle | Communications Biology | en_US |
dc.identifier.affiliation | Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK. | en_US |
dc.identifier.affiliation | Emerging Innovations, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA. | en_US |
dc.identifier.affiliation | Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden. | en_US |
dc.identifier.affiliation | Medicine (University of Melbourne) | en_US |
dc.identifier.doi | 10.1038/s42003-022-04245-4 | en_US |
dc.type.content | Text | en_US |
dc.identifier.orcid | 0000-0003-3952-7363 | en_US |
dc.identifier.orcid | 0000-0002-8965-0813 | en_US |
dc.identifier.orcid | 0000-0003-4970-6461 | en_US |
dc.identifier.orcid | 0000-0002-8939-5445 | en_US |
dc.identifier.pubmedid | 36434048 | - |
dc.description.volume | 5 | - |
dc.description.issue | 1 | - |
dc.description.startpage | 1291 | - |
item.openairetype | Journal Article | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Journal articles |
Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.