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Highlights
• Temporal complexity of rsfMRI, measured by multi-scale entropy, is reproducible

in healthy subjects.

• Temporal complexity of resting-state networks correlates with higher-order cog-
nition.

• Frontoparietal and default mode networks represent maximal complex dynamics.

• Functional brain connectivity and rsfMRI complexity have a scale-dependent
relationship.

• Head motion is temporally less complex than rsfMRI.
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Abstract
It has been hypothesized that resting state networks (RSNs) likely display unique
temporal complexity fingerprints, quantified by their multi-scale entropy patterns
[1]. This is a hypothesis with a potential capacity for developing digital biomarkers
of normal brain function, as well as pathological brain dysfunction. Nevertheless,
a limitation of [1] was that resting state functional magnetic resonance imaging
(rsfMRI) data from only 20 healthy individuals was used for the analysis. To val-
idate this hypothesis in a larger cohort, we used rsfMRI datasets of 1000 healthy
young adults from the Human Connectome Project (HCP), aged 22-35, each with
four 14.4-minute rsfMRI recordings and parcellated into 379 brain regions. We
quantified multi-scale entropy of rsfMRI time series averaged at different cortical
and sub-cortical regions. We performed effect-size analysis on the data in 8 RSNs.
Given that the morphology of multi-scale entropy is affected by the choice of its
tolerance parameter (r) and embedding dimension (m), we repeated the analy-
ses at multiple values of r and m including the values used in [1]. Our results
reinforced high temporal complexity in the default mode and frontoparietal net-
works. Lowest temporal complexity was observed in the sub-cortical areas and
limbic system. We investigated the effect of temporal resolution (determined by
the repetition time TR) after downsampling of rsfMRI time series at two rates.
At a low temporal resolution, we observed increased entropy and variance across
datasets. Test-retest analysis showed that findings were likely reproducible across
individuals over four rsfMRI runs, especially when the tolerance parameter r is
equal to 0.5. The results confirmed that the relationship between functional brain
connectivity strengths and rsfMRI temporal complexity changes over time scales.
Finally, a significant relationship was observed between temporal complexity of
RSNs and fluid intelligence (people’s capacity to reason and think flexibly) sug-
gesting that complex dynamics of the human brain is an important attribute of
high-level brain function. .

Key words: temporal complexity, multi-scale entropy, resting state network,
functional MRI, human connectome project, fluid intelligence, reproducibility
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1 Introduction
The human brain is a complex hierarchy of modules that are dynamically interact-
ing with each other at micro, meso and macro scales [2,3]. Anatomically distinct,
but functionally connected regions of the cortex that simultaneously fluctuate over
time are referred to as resting state networks (RSNs). RSNs are intrinsic organi-
zations of functional connectivity in the brain that are communicating with each
other even in the absence of an overt cognitive tasks [4–6]. These functional brain
networks can be derived from resting state functional magnetic resonance imag-
ing (rsfMRI), and are supporting a variety of sensory, cognitive and behavioural
functions [7, 8]. Perturbed functionality of RSNs contributes to a range of brain
diseases including epilepsy [9], Alzheimer’s disease [10], autism [11], depression [12]
and schizophrenia [13]. Although alterations of RSNs have been subject to numer-
ous studies, characterization of their temporal complexity remains an open question
in the brain sciences [1, 14–21]. In the context of this study, temporal complex-
ity is referred to as a balanced dynamical behaviour between pure regularity and
complete irregularity in the time domain. This is a significant challenge in modern
neuroscience because temporal brain complexity may provide a quantitative view
of brain function at the phenomenological level which in turn, may lead to the
development of more efficient diagnostic and prognostic markers of brain diseases.

Functional co-activations associated with RSNs fluctuate over time [22, 23].
Until recently, most studies would treat functional brain connectivity as a static
entity. The emergence of advanced neuroimaging techniques such as fast rsfMRI
have opened up a new avenue for studying the dynamics of functional connectiv-
ity [24]. There is now a consensus that this dynamic behaviour resides between
temporal order and disorder [25–27]. Temporal complexity of brain dynamics
arises from interactions across numerous sub-components in the brain [1] and can
be affected by internal and/or external factors such as sensory inputs, attention
and drowsiness [28]. Revelations of this complexity include, but not limited to,
self-similarity of EEG micro-state sequences [29,30], dynamics of microscopic and
mesoscopic neural networks in the brain [3,31] and neuronal oscillations associated
with different brain regions [32]. Several attempts have been made to character-
ize the temporal complexity of RSNs using rsfMRI data including time-frequency
analysis [23], independent components analysis [33], point process analysis [34],
sliding window analysis [35], phase synchrony analysis [36,37], auto-regressive mod-
elling [38] and nonlinear analysis [1, 18, 39, 40] (see [24] for a detailed review). An
important form of temporal complexity in brain function can be observed through
multi-scale entropy analysis of RSN dynamics [1]. Multi-scale entropy [41, 42]
quantifies the rate of generation of new information in a dynamical process by
computing sample entropy [43] over multiple temporal scales. Each scale provides
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a specific time resolution through coarse graining of the input signals. For ex-
ample, random signals such as white noise have high sample entropy values at
fine scales (i.e., fast fluctuations) which drop gradually in value at large scales
(i.e., slow fluctuations). On the other hand, complex signals such as random walk
or biosignals generate a more consistent sample entropy curve over different time
scales, due to repeating information-bearing patterns across multiple time resolu-
tions [20, 41,42,44].

In this paper, we investigated if the dynamics of RSNs can be differentiated
based on their temporal complexity. To this end, we aimed to validate the exis-
tence of multi-scale entropy fingerprints in rsfMRI-based RSNs. This hypothesis
was tested in [1] using rsfMRI datasets of 20 healthy subjects from the Human
Connectome Project (HCP) [45] via multi-scale entropy analysis in four RSNs: de-
fault mode, central executive, as well as the left and right frontotemporal networks
(Figure 1). Given the capacity of RSN complexity as an imaging-based marker of
brain function in health and disease, we aimed to investigate this hypothesis in a
larger sample cohort of 1000 rsfMRI datasets from the HCP database. We included
8 RSNs in this study, with a particular focus on to what extent rsfMRI results are
dependent on the tolerance parameter r, embedding dimension m and temporal
resolution of rsfMRI in multi-scale entropy analysis. We also conduced test-retest
and effect-size analyses to delineate the reproducibility of RSN complexity across
multiple rsfMRI scans and over subjects. We hypothesized that temporal com-
plexity of brain function is related to higher order cognitive processes such as fluid
intelligence or people’s capacity to reason and think flexibly. Lastly, we looked into
the potential link between functional brain connectivity and temporal complexity
of RSNs at different time scales.

2 Materials and Methods

2.1 rsfMRI Data, parcellation masks and preprocessing

We used a subset of the HCP database [45] including 1000 rsfMRI datasets (Nsubj=1000).
Each subject participated in two separate rsfMRI sessions on two different days,
with two acquisitions per day, i.e., left to right and right to left slicings. We refer
to these recordings as four fMRI runs throughout this paper. Each run was of
length 14.4 minutes (or 1200 time points) with a voxel size of 2×2×2 millime-
ters the repetition time (TR) of 720 milliseconds in a 3T scanner. The following
preprocessing steps were applied on each dataset: 1) echo planar imaging gradi-
ent distortion correction, 2) motion correction, 3) field bias correction, 4) spatial
transformation, 5) normalization into a common Montreal Neurological Institute
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Multi-scale entropy patterns of 4 RSNs in 20 subjects [1]

Figure 1: Multi-scale entropy patterns of 4 RSNs (default mode network or DMN, central
executive network or CON, left frontal network or LFN, right frontal network or RFN) in 20
subjects reported in [1]. The image, taken from [1], is published under theterms of Creative
Commons Attribution Licence (CC BY), allowing for reproduction.

space [46] and 6) artefact removal using independent component analysis FIX [47].
A parcellation mask [46] was used to parcellate the gey matter into 360 cortical
and 19 sub-cortical regions of interest (NROI=379). The preprocessed datasets are
publicly available at the HCP website under an Open Access Data plan agreement.

2.2 Multi-scale entropy analysis

While there are several definitions of signal entropy in the literature, our focus here
is on multi-scale entropy analysis [41, 42]. This technique is an extended version
of sample entropy [43] over multiple time scales.

2.2.1 Sample entropy

Sample entropy [43] is a signal complexity measure which treats each short piece of
an input signal x as a template to search for any neighbouring templates throughout
the entire length of the signal. A template Xm

i is defined as1:

Xm
i = {xi, xi+1, ... , xi+m−1}, i = 1, ..., N −m+ 1. (1)

where N is the number of time points in x and m is the embedding dimension pa-
rameter. Two templates Xm

i and Xm
j are considered as neighbours if their Cheby-

shev distance d(Xm
i ,X

m
j ) is less than a tolerance parameter r. It leads to an

1In all equations, scalar variables are in normal font, while vector variables are in bold.
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r-neighbourhood conditional probability function Cm
i (r) for any vector Xm

i in the
m-dimensional reconstructed phase space:

Cm
i (r) =

1

N −m+ 1
Bm
i (r), i = 1, ..., N −m+ 1, (2)

where Bm
i (r) is given by:

Bm
i (r) =

N−m∑

j=1

Ψ(r − d(Xm
i ,X

m
j )), (3)

where Ψ(.) is the Heaviside function, defined as:

Ψ(a) =

{
0 a < 0

1 a ≥ 0.
(4)

The Chebyshev distance d is defined as:

d(Xm
i ,X

m
j ) := max

k
(|xi+k − xj+k|, k = 0, ...,m− 1). (5)

Sample entropy is then given by:

SampEn(x,m, r) = lim
N→∞

ln
Brm
Brm+1

, (6)

where Brm is the average of Bm
i (r) over all templates:

Brm =
1

N −m
N−m∑

i=1

Bm
i (r). (7)

Since d(Xm
i ,X

m
j ) is always smaller than or equal to d(Xm+1

i ,Xm+1
j ), Brm+1 will

always take smaller or equal values than Brm. Therefore, sample entropy is always
non-negative with larger values indicating less regularity [43]. The tolerance pa-
rameter r plays a central role in any sample entropy analysis, because it defines
the probability of neighbourhood (i.e., similarity) between two templates in the
reconstructed phase space. It is important to multiply r by the standard deviation
of x to account for amplitude variations across different signals [18, 43]. In this
study, we used the embedding dimension of m=2 and the tolerance parameter of
r=0.5 for sample entropy analysis, as adapted in [1]. In addition, we used the
tolerance parameter of r=0.15, a widely used option in the literature (see [48, 49]
ans examples), as well as a range of embedding dimensions from m=3 to m=10.
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2.2.2 Multi-scale entropy

Multi-scale entropy extracts sample entropy after coarse-graining of the input
signal x at a range of time scales τ [41]. A coarse-grained vector xτ = {xτi } is
defined as:

xτi =
1

τ

iτ∑

k=(i−1)τ+1

xk, τ = 1, 2, ..., τmax, i = 1, ..., [N/τ ] , (8)

where x1 = x. Following [1], we set τmax to 25. At the group level, we averaged
the multi-scale entropy curves over subjects and calculated the standard deviation
at each scale. We also computed the complexity index (i.e., area under the curve)
of multi-scale entropy patterns for RSNs, in all datasets.

2.2.3 Complexity index

To reduce the dimensionality of multi-scale entropy patterns to a single value, a
complexity index is defined as the area under each multi-scale entropy curve over
all scales, divided by the maximum number of scales (i.e., τmax) [50]. For a single
subject, it can be approximated with the normalized area under the multi-scale
entropy curve across multiple time scales (using MATLAB’s trapz command):

Mi =
1

τmax

∫ τmax

1

SampEn(xτ ,m, r) dτ. (9)

2.2.4 The role of rsfMRI temporal resolution

Given the relatively short repetition time of rsfMRI time series in the HCP database
(TR=0.72 seconds), we investigated to what extent the observed complex dynam-
ics of RSNs is sensitive to rsfMRI temporal resolution. This is an important issue
to check, because TR values longer than one second are common across research
and clinical centres. We resembled longer TR’s in our datasets by downsampling
of the rsfMRI time series in the HCP database. To this end, we calculated the
complexity indices of RSNs after downsampling of the rsfMRI time series at the
rates of 2 and 4, resembling the repetition times of TR=1.44 seconds and TR=2.88
seconds, respectively.

2.2.5 Effect size analysis using the Hedges’ g measure

We quantified the difference between complex dynamics of RSNs by pair-wise effect
size analysis of the complexity index distributions at three temporal resolutions
(i.e., original TR of 0.72 seconds and two downsampling rates) as well as multiple
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Multi-scale entropy analysis of color noise

Figure 2: Multi-scale entropy of white noise in black color, blue noise in blue color, pink noise
in pink color and red (Brown) noise in red color (m=2, r=0.15). For each noise type, 100 random
realizations were generated. Column (A) Exemplary realizations in the time domain. Column
(B) Shaded error bars of power spectral density functions associated with 100 realizations. (C)
Distributions of multi-scale entropy patterns over 100 realizations. Shaded regions show one
standard deviation from the mean curve. (D) Distributions of complexity index values.

combinations of the multi-scale entropy parameters (i.e., r=0.15, 0.5 and m=2 to
10). To this end, we used the Hedges’ gi,j statistic, defined as [52]:

gi,j =
Mi −Mj

σi,j
, (10)

where Mi and Mj are the group mean complexity indices of the ith and jth RSNs,
respectively, and σi,j is the squared mean of the associated standard deviations
computed as:

σi,j =

√
σ2
i + σ2

j

2
. (11)

The confidence interval and p-value of the Hedges’ g measures were calculated
through bootstrapping (2000 random samplings of the original time series with
replacement)2.

2The effect size analysis toolbox associated with [53] is available at the MATLAB File Ex-
change website.
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Multi-scale entropy analysis of RSNs and head motion (r=0.5)

Figure 3: Top row: Multi-scale entropy patterns of 8 RSNs as well as head motion (frame-wise
displacement), averaged over 1000 subjects and four rsfMRI runs, with the tolerance parameter
r=0.5 and a range of embedding dimensions m from 2 to 10. In all plots, each curve represents
an average and the error bars demonstrate one standard deviation over subjects. The entropy
curves have been color-coded according to their complexity indices. The multi-scale entropy
curve of head motion (labeled as FD) has a distinct pattern compared to RSNs. Middle row:
ROI-wise multi-scale entropy patterns, averaged over 1000 subjects and four rsfMRI runs for the
same parameter sets as the first row. The entropy patterns associated with the cortical regions
(NROI=360) are in blue color and associated with the sub-cortical regions (NROI=19 are in
red color. The brain parcels were obtained according to [46]. Bottom row: Bar plots of the
group-mean complexity indices associated with the RSN-wise multi-scale entropy patterns in the
first row. The RSNs have been sorted according to their group-mean complexity indices. In all
plots, the bars are labeled as follows: FP, DA, DMN, VIS, SM, VA, SUBC, L. Abbreviation:
FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network, VIS = Visual, SM
= Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic, FD = Frame-wise
Displacement (extracted from head motion parameters). See [51] for the illustrations of RSNs.

2.2.6 Test-retest analysis using the intra-class correlation coefficient

In order to investigate the reproducibility of multi-scale entropy patterns extracted
from RSNs at different temporal resolutions, we computed intra-class correlation
coefficient of sample entropy values at single time scales and over four rsfMRI
scans (Nrun=4). Following [54], we chose the third intra-class correlation coefficient
measure defined in [55] for test-retest analysis as:

ICCi(τ) =
BMSi(τ)− EMSi(τ)

BMSi(τ) + (Nrun − 1)EMSi(τ)
, (12)
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where BMSi(τ) and EMSi(τ) are the between-subjects mean square and the error
mean square of sample entropy values, respectively, for the ith RSN at the time
scale τ . We considered the intra-class correlation coefficient values below 0.4 as
poor reliability, between 0.4 and 0.6 as fair reliability and between 0.6 and 0.8 as
good reliability [54].

2.3 Temporal complexity of RSNs and cognition

We also tested whether temporal complexity of rsfMRI is related to higher order
cognition. For each subject (Nsubj = 1000), we selected five well-validated domain-
specific behavioural variables (Nbeh = 5) involved in higher order cognition; i) the
Eriksen flanker task (Flanker_Unadj — measuring response inhibition and task
switching); ii) the Wisconsin Card Sorting Test (CardSort_Unadj — measuring
cognitive flexibility); iii) the N-back task (WM_Task_acc — measuring work-
ing memory performance); iv) the Ravens task (PMAT24_A_CR — measuring
fluid intelligence); and v) the relational task (Relational_Task_Acc — measuring
planning and reasoning abilities). See [56], for full information about behavioural
variables included in the HCP. We defined a multiple linear regression model with
Nbeh independent variables as follows:

M̂i = β̂i(0)1 + β̂i(1)b1 + ...+ β̂i(Nbeh)bNbeh
, (13)

where 1 is a column vector of 1’s, M̂i ∈ RNsubj×1 is the predicted vector of
subject-specific complexity indices in the ith RSN and bk ∈ RNsubj×1 is the asso-
ciated vector of kth behavioural measures (k = 1, ..., Nbeh). For each estimated
coefficient β̂i(k), we performed a t-test at the significance level of 0.05 whether
the coefficient is equal to zero or not. To assess whether the correlation coeffi-
cients between real complexity indices Mi and their predicted associates M̂i are
statistically significant, we performed a permutation testing for each RSN where
we permuted the order of subjects in Mi, refitted the model and repeated this pro-
cedure for 10000 times. It led to an empirical null distribution for each network.

To assess the contribution of each behavioural variable into the temporal com-
plexity of RSNs, we performed a bidirectional step-wise regression analysis where
the independent variables were added or removed based on their importance to
the fitted model in an iterative fashion at the significance level of 0.05 [57]. The
procedure continues until no further improvement can be obtained in the goodness
of fit of the regression model (here, at a significance level of p<0.05).
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3 Results

3.1 Simulation: Multi-scale entropy analysis of color noise

To demonstrate the capacity of multi-scale entropy analysis for encoding signal dy-
namics, we simulated 100 realizations of four color noise signals (white, blue, pink
and red) with 1200 time-points and computed their multi-scale entropy patterns
(m=2, r=0.15). See Figure 2-A, B for exemplary realizations of the noise types
and their associated power spectral densities. As Figure 2-C shows, multi-scale
entropy curves of each noise type are distinct and can be considered as their dy-
namical signature. The associated complexity index values are also an informative
indicator of the time-varying nature in each noise type, except for white and red
noise whose complexity distributions fully overlap (Figure 2-D). Among the four,
blue and white noises lead to lower complexity indices, while pink and red noises
resemble complex signals due to their 1/fβ spectral density functions and fractal
properties [58].

3.2 RSNs are temporally complex

We observed distinct multi-scale entropy patterns between cortical and sub-cortical
parts of RSNs (379 regions in total illustrated as blue and red curves in the middle
rows of Figure 3 and Figure 4). A visual comparison between cortical/sub-cortical
multi-scale entropy curves and simulated noise processes (Figure 2-C) suggests
that the entropy patterns of higher-order RSNs are closer to the morphology of
synthetic complex signals such as pink noise and red noise, while sub-cortical brain
regions and limbic network are more similar to non-complex, and random, signals
such as white noise and blue noise. This observation was more evident for the tol-
erance parameter r=0.5 compared to r=0.015 (top row of Figure 3 in contrast to
the top row of Figure 4). Our multi-scale entropy analysis of RSNs at r=0.5, m=2
and τ=1 to 25 was in line with the findings of [1] where the default mode and fron-
toparietal networks were studied. Possible differences between [1] and our study
may be due to the fact that we used a different brain parcellation and spatial defini-
tion of RSNs compared to McDonough and Nashiro. As the third rows of Figure 3
and Figure 4 illustrate, multi-scale entropy patterns of RSNs preserve a consistent
order of complexity index across 8 RSNs with the frontoparietal (FP) and default
mode networks as the most complex and the sub-cortical (SUBC) and limbic (L)
networks as the least complex RSNs. Visual (VIS) and somatomotor (SM) and
ventral attention (VA) networks also sit in between. This ordering remains pretty
consistent after changing of the multi-scale entropy parameters, despite differences
in the morphology of RSN entropy patterns. The tolerance parameter r=0.5 leads
to a more stable morphology over different embedding dimensions m, while the
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entropy curves associated with r=0.15 represent considerable amount of undefined
values for dimensions above 3 (m ≥4) and therefore, less discrimination between
the temporal complexity of RSNs (bottom row in Figure 4). The undefined values
of multi-scale entropy are caused by the zero values of Brm in Eq. 6 due to the lack
of neighbouring templates Xm

i and Xm
j at the tolerance parameter r. The effect

size analysis of the pair-wise comparisons across RSNs are illustrated in Figure 6
and summarized in the first columns of Table S6 (for r=0.5 and m=2) and Table
S7 (for r=0.15 and m=2). According to the tables, RSNs are highly distinguish-
able based on their associated complexity indices at both values of r (Hedges’ g of
2.33±1.68 for r=0.5 and 2.55±1.72 for r=0.15).

3.3 Head motion is temporally less complex than RSN dy-
namics

A striking observation in the top rows of Figure 3 and Figure 4 is the distinctive
multi-scale entropy pattern of head motion, quantified by frame-wise displacement
of each subject during the rsfMRI runs, in contrast to the dynamics of RSNs.
Frame-wise displacement of an rsfMRI recording is defined as the sum of the
absolute values of the derivatives of its associated six realignment parameters [59].
As the figures suggest, head motion has a considerably lower temporal complexity
than rsfMRI time series which makes it comparable with the dynamics of white
and blue noises in Figure 2. This distinction is most obvious across the lower
time scales (τ ≤10). Notably, an increase in the embedding dimension m has a
detrimental impact on the multi-scale entropy patterns of head motion at r=0.15
and increases the standard deviation at each time scale drastically (see Figure
4). In fact, embedding dimensions above 3 lead to very poor outcome at r=0.15.
From this perspective, the choice of r=0.5 is more appropriate for multi-scale
entropy analysis of rsfMRI and head motion, as it is more robust to the changes
of embedding dimension.

3.4 Temporal complexity of RSNs is stronger at shorter TR’s

Figure 5 to Figure S3 illustrate multi-scale entropy curves of 8 RSNs using the tol-
erance parameters r=0.5, 0.15 and embedding dimensions m=2,3,4, at the down-
sampling rates of 2 (equivalent with a TR of 1.44 seconds) and 4 (equivalent with
a TR of 2.88 seconds). We observed that the morphology of entropy values was
clearly influenced by the temporal resolution of the underlying data (see Figure
5 and Figure S2 versus Figure 3 for r=0.5 and Figure S1 and Figure S3 versus
Figure 4 for r=0.15). This change was reflected as a decrease in the mean val-
ues of the complexity indices across RSNs (see the bottom rows in all figures).
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Multi-scale entropy analysis of RSNs and head motion (r=0.15)

Figure 4: Top row: Multi-scale entropy patterns of 8 RSNs as well as head motion (frame-wise
displacement), averaged over 1000 subjects and four rsfMRI runs, with the tolerance parameter
r=0.15 and a range of embedding dimensions m from 2 to 10. In all plots, each curve represents
an average and the error bars demonstrate one standard deviation over subjects. The entropy
curves have been color-coded according to their complexity indices. The multi-scale entropy
curve of head motion (labeled as FD) has a distinct pattern compared to RSNs. Middle row:
ROI-wise multi-scale entropy patterns, averaged over 1000 subjects and four rsfMRI runs for the
same parameter sets as the first row. The entropy patterns associated with the cortical regions
(NROI=360) are in blue color and associated with the sub-cortical regions (NROI=19 are in
red color. The brain parcels were obtained according to [46]. Bottom row: Bar plots of the
group-mean complexity indices associated with the RSN-wise multi-scale entropy patterns in the
first row. The RSNs have been sorted according to their group-mean complexity indices. Blanc
panels represent undefined entropy values. In all plots, the bars are labeled as follows: FP, DA,
DMN, VIS, SM, VA, SUBC, L. Abbreviation: FP = Frontoparietal, DA = Dorsal Attention,
DMN = Default mode network, VIS = Visual, SM = Sensorimotor, VA = Ventral Attention,
SUBC = Sub-cortical, L = Limbic, FD = Frame-wise Displacement (extracted from head motion
parameters). See [51] for the illustrations of RSNs.

Having said that, pair-wise discrimination between the complexity index distribu-
tions of RSNs was still preserved after downsampling (see the second and third
columns of Table S6 and Table S7). However, a consistent reduction was intro-
duced to the pair-wise Hedges’ g statistics of effect size analysis in longer TR’s
(from 2.33±1.68 to 1.83±1.33 and 1.17±0.79 for r=0.5 and from 2.55±1.72 to
2.06±1.32 and 0.33±0.22 for r=0.15). Figure 6 illustrates the color-coded Hedges’
g measures of rsfMRI complexity index distributions using two tolerance param-
eter values at three temporal resolutions and using the embedding dimension of
m=2.
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Temporal complexity of downsampled RSNs (r=0.5 and downsampling
rate of 2)

Figure 5: The effect of downsampling on the multi-scale entropy curves of HCP, averaged
over 1000 subjects and four rsfMRI runs. (A)-(C): Error bars of multi-scale entropy curves
after downsampling of rsfMRI time series at the rate of 2 for the embedding dimensions
m=2,3,4 and the tolerance parameter r=0.5. The entropy curves have been color-coded
according to their complexity indices (normalized area under their curve). (D)-(F): Mean plots of
the complexity index values extracted from the multi-scale entropy curves of (A)-(C), respectively.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs

.

3.5 Temporal complexity of RSNs is reproducible

We performed a test-retest analysis to assess whether complexity of RSNs is re-
producible across different rsfMRI runs of HCP. We computed multi-scale entropy
curves of 1000 datasets for four rsfMRI runs of length 14.4 minutes separately
(i.e., 4×1200 TR’s). We computed the intra-class correlation coefficient of scale-
dependent sample entropy values over all subjects and four sessions for 8 RSNs [51]
and 25 time scales. We repeated the test-retest analysis for two tolerance parame-
ters r=0.15, 0.5, three embedding dimensions m=2,3,4 and three rsfMRI temporal
resolutions. The results are presented as color coded maps in Figure S5. As this
figure shows, the tolerance parameter r=0.5 and m=2 at the original temporal
resolution of rsfMRI (TR=720 msec) yielded the greatest intra-class correlation co-
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efficient scores. At all temporal resolutions, reproducibility decreased from r=0.5
to r=0.15. Also, an increase in the embedding dimension m had a detrimental im-
pact on the reproducibility of RSN complexity indices at r=0.15, while the values
associated with r=0.5 were almost unchanged. Given that intra-class correlation
coefficient decreases as a function of greater downsampling, it is possible that
longer TR’s in the rsfMRI time series have a detrimental effect on the reproducibil-
ity of RSN complexity. Amongst the 8 RSNs, the default mode and frontoparietal
networks had strongest test-retest reliability. Lowest reproducibility was seen in
the sub-cortical network.

3.6 Temporal complexity of RSNs correlates with higher or-
der cognition

A permutation test with 10000 randomization’s over subjects showed that corre-
lation coefficients associated with all RSNs were above the 95th percentile of the
empirical null distributions (Figure S4). This means that the correlation between
original and predicted rsfMRI complexity was statistically higher than expected
by chance. We performed step-wise regression analysis between five behavioural
variables and complexity indices of 8 RSNs for m=2, r = 0.15, 0.5 as well as no
downsampling, downsampling at the rate of 2 and downsampling at the rate of 4
(6 different conditions in total). The results have been summarized in Figure S8
to Figure S13. As the tables show, fluid intelligence was the only winning variable
in all RSNs under different scenarios. Amongst the five cognitive measures, fluid
intelligence (Variable 4) displayed statistically significant (positive) regression coef-
ficients (β’s) with 8 RSNs at all temporal resolutions for both tolerance parameters
r=0.5 and r=0.15. To this end, we corrected each set of 8 RSN-specific p-values
and 5 behavioural variables (i.e., 40 tests, in total) using the false discovery rate
method at the significance level of q-value no more than 0.05. It ensures that
the likelihood of false-positive results across significant regression variables stays
below 5% after multiple comparisons. In other words, the association between
fluid intelligence and temporal complexity of RSNs is relatively robust against the
choice of tolerance parameter r and downsampling of the rsfMRI time series.

3.7 Spatial distribution of rsfMRI complexity

Figure 7 demonstrates the spatial distribution of complexity indices across 379
brain regions according to the brain parcellation of [46]. The highest complexity
indices in the brain map of Figure 7-A are associated with FP, DMN and DA net-
works and the lowest values correspond to subcortical areas and the limbic system.
More precisely, top five brain regions with the highest complexity values belong
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to left and right inferior parietal cortex (PGs, left and right PFm and left PF).
Also, bottom five brain regions with the lowest complexity include left entorhinal
cortex (EC), left and right nucleus accumbens as well as left and right pallidum.
On the other hand, the lowest variability in Figure 7-B was observed across regions
with the highest mean complexity including left and right inferior parietal cortex
(PFm and left PGs) as well as superior parietal cortex areas associated with DMN
(IP1). In contrast, the highest CI variability was associated with left inferior tem-
poral sulcus (TE2a), left ventro-medial visual areas (VMV1), left middle temporal
gyrus (TE1m), Right insular granular complex (Ig) and right lateral temporal cor-
tex (TF). See [60] for more information about specific functions of these brain
areas. This finding is consistent with our RSN specific analysis that signal com-
plexity is highest in frontoparietal networks and DMN. Table S1 summarizes the
brain regions with highest/lowest mean complexity and lowest/highest variability
of complexity at the group level.

We also investigated the relationship between functional brain connectivity and
multi-scale entropy of RSNs over time scales [1]. To this end, we extracted the
functional brain connectivity strengths of 379 brain parcels over four rsfMRI runs
leading to four brain maps for each subject. The functional connectivity strength
of each ROI was defined as the sum of weights of links connected to that ROI.
The links between ROIs were defined as the pair-wise correlation between their
associated rsfMRI time series. We examined the spatial correlation between the
average-run maps of sample entropy (i.e., scale-dependent multi-scale entropy) and
functional connectivity strengths for each RSN separately. As Figure 8 illustrates,
there is a negative correlation between functional connectivity and temporal com-
plexity of RSNs at fine scales (i.e., between τ=3 for subcortical and limbic networks
to τ=5 for frontoparietal, default mode and dorsal attention networks), while it
turns to a positive correlation at coarse scales (τ ≥6). This observation is in line
with the finding reported in [1].

4 Discussion
Our study validates the hypothesis of distinct multi-scale entropy signatures in
functional brain networks and reinforces the previous finding in [1]. We also build
on previous research in several ways by (i) increasing the number of subjects from
20 to 1000, enabling a statistically more robust characterization of RSN complex-
ity in the time domain, (ii) delineating temporal complexity in an additional four
RSNs, (iii) comparing two values of the tolerance parameter r and multiple values
of the embedding dimensions m for multi-scale entropy analysis, (iv) investigating
the relationship between the temporal complexity of head motion and dynamics
of RSNs, (v) investigating the effect of temporal resolution on the complexity of
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Pair-wise effect size analysis of multi-scale entropy patterns of RSNs

Figure 6: Hedges’ g statistics obtained from effect size analysis of the complexity index dis-
tributions calculated for each pair of RSNs. The analysis has been repeated for the embedding
dimension m=2, the tolerance parameters (r=0.15,0.5) and at three downsampling scenarios (no
downsampling, downsampling at the rate of 2 and downsampling at the rate of 4). The Hedges’
g values of less than 0.2 imply small effect, 0.2 to 0.5 are considered as medium effect, 0.5 to
1.5 are deemed as large effect and above 1.5 represent very large effect. Abbreviation: FP
= Frontoparietal, DA = Dorsal Attention, DMN = Default mode network, VIS = Visual, SM
= Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic. See [51] for the
illustrations of RSNs

.
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Group-level mean and variability of temporal complexity

Figure 7: (A) Grand-mean brain map of RSN complexity indices, (B) normalized standard
deviation map of RSN complexity indices. Both maps were extracted from rsfMRI datasets of
1000 HCP subjects, averaged over four resting state runs. Each dataset was parcellated using
the Glasser atlas with 379 regions [60]. The complexity index is defined as the area under the
curve of multi-scale entropy. The complexity indices were z-scored to aid visualization.

RSNs, (vi) analyzing the reproducibility of complex dynamics in functional net-
works over multiple recording sessions, and (vii) showing that signal complexity
is related to higher-order cognitive processing.

The conceptual definition of temporal complexity may vary depending on con-
text and data. In the context of our study, we refer to temporal complexity as a
grey boundary between order and disorder over time. From this perspective, ran-
dom fluctuations such as white noise have low temporal complexity, because they
are completely disordered. Thus, temporal complexity is not necessarily equivalent
to high unpredictability or high randomness. On the other hand, highly ordered
signals such as a pure sine wave also have minimal complexity. RsfMRI sits in be-
tween these two exemplars because it represents spreading patterns of ’structured
activity’ across multiple frequency components and temporal scales that are em-
bedded in a random background [24, 61–63]. This complex behaviour arises from
functional interactions of numerous sub-components in the brain representing a
balanced ‘tuning’ between order and disorder [15]. Several internal and external
factors such as sensory inputs, attention, drowsiness and imagination may also
‘push’ brain dynamics towards either order or disorder, but stably [28]. It remains
an open question of how to quantify ‘balanced’ fluctuations [64] in brain function
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Link between the functional connectivity strength and temporal
complexity of RSNs

Figure 8: The relationship between functional connectivity strength and temporal complexity
of brain regions across different RSNs. The results have been averaged over 1000 subjects and
four rsfMRI runs. The networks have been colored coded according to their temporal complexity.
The x-axis shows the time scales associated with the multi-scale entropy patterns of RSNs. The
y-axis represents the spatial correlation between the ROI-wise functional connectivity strengths
and their corresponding temporal complexity indices across different networks.

and delineate their relationship with human behaviour and cognition.

The dynamics of RSNs represent a continuum of multi-scale entropy charac-
teristics, from low complex regions across the entorhinal cortex [65] and subcor-
tical areas including the basal ganglia have spatial patterns resembling complex
noise types (i.e., pink and red noise) within frontoparietal and default mode net-
works [66]. See Figure 2-C in contrast to the first and second rows of Figure 3 and
Figure 4. Our results suggest that the temporal complexity of RSNs is a highly
discriminative feature that cannot be explained by head movement. Head motion,
as quantified by frame-wise displacement, reflected a considerably lower temporal
complexity than the RSN dynamics. This difference is reflected in the multi-scale
entropy patterns of these signals and is significantly affected by the choice of the
tolerance parameter r and the embedding dimension m. According to the results
of this study, a tolerance parameter of r = 0.5 and an embedding dimension within
the range of 2 to 5 lead to an acceptable separation between RSN dynamics and
head motion as well as discrimination over RSNs. Large embedding dimensions in
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the multi-scale entropy analysis can increase the distance quantity d(Xm
i ,X

m
j ) and

therefore, the probability of zero outputs occurring in the Heaviside step function
in Eq. 3. This is specially the case when small tolerance values are used for the
multi-scale entropy analysis. Examples include the high occurrence of undefined
entropy values for the combination of r = 0.15 and m ≥5 in the second and third
rows of Figure 4. As presented in Tables S8 to S13, fluid intelligence seems to have
the strongest linear relationship with the temporal complexity of rsfMRI. This be-
havioural measures refers to people’s ability to provide logical solutions to specific
problems, in novel situations where acquired knowledge cannot be retrieved [67].

Vigilance is another important aspect of cognition whose influence on RSNs has
been studied before [68–70]. It has been hypothesized that the temporal behaviour
of RSNs is influenced by variations in vigilance [68]. Maintaining a constant level
of wakefulness is difficult during resting state experiments, although HCP subjects
are instructed to keep awake and visually fixate on a cross on a screen. However,
it is still important to consider the potential impact of vigilance fluctuations on
the multi-scale entropy patterns of RSNs and their associated complexly indices.
This can also influence the interpretations of which functional brain networks have
more reliable brain complexity dynamics. The relationship between vigilance and
temporal complexity of RSNs is regarded to future work.

Multi-scale entropy patterns provide a more comprehensive picture about brain
complexity than sample entropy at single time scales. In fact, single-scale sample
entropy analysis could lead to misleading interpretations about the complexity of
brain regions and functional networks, as demonstrated in the top rows of Figure
3 and Figure 4 the entropy values associated with different RSNs may get reverse
over large scales (for example, before and after τ=3 at the tolerance parameter
r=0.5 and the embedding dimension m=2). The distinction in complexity be-
tween cortex and subcortex is likely related to lower temporal signal to noise ratio
in rsfMRI time series within subcortical nuclei. This may be due to a higher vul-
nerability to thermal noise related to MRI system electronics, gradient switching
artifact and physiological noise including cardiac pulsations and respiratory ac-
tivity [71]. This can be further investigated using 7T data, or multi-echo data,
by testing whether this distinction remains in data where the sub-cortical signal
to noise ratio is improved. Figure 3 and Figure 4 show that multi-scale entropy
curves, and their associated complexity indices, are considerably affected by the
choice of the tolerance parameter r and embedding dimension m (see [72] for an-
other in-depth investigation of the role of r and m in sample entropy). As the
bottom rows of the figures suggest, the relative network ordering of complexity
indices is a more consistent discriminative feature across RSNs. The effect size
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of complex signatures across RSNs decreases at smaller r’s (note the difference
between the upper and lower rows of Figure 6) and at lower temporal resolutions
(note the systematic reduction from left to right in Figure 6). Having said that,
almost all of pair-wise Hedges’ g statistics remain statistically significant after
bootstrapping (see Table S6 and Table S7), also due to our large sample cohort.
The embedding dimension m is an influential factor in multi-scale entropy analy-
sis which controls the dimensionality of the reconstructed phase space [72]. For a
given embedding dimension m, a tolerance r, and a single time scale τ , multi-scale
entropy estimates the average logarithm of the probability that if two segments of
length m in the data have distance r then two segments of length m+ 1 also have
distance r. We tested a range of values for m throughout the study and found
a consistent estimate of multi-scale entropy for the tolerance parameter r=0.5 up
to m = 10 and a severe loss of the estimates for r=0.15 for m ≥4 at the original
temporal resolution of rsfMRI, i.e., TR=720 msec (Figure 3 vs. Figure 4). The
mean RSN complexity indices in the lower rows of Figure 5 as well as Figure S1 to
Figure S3 suggest that at longer TR’s the embedding dimension above m=3 may
reduce the separability of RSNs (in particular, as the tolerance parameter r=0.15).
Since HCP datasets consist of four rsfMRI recording sessions per subject, we were
in a good position to perform a test-retest analysis of network-specific multi-scale
entropy. Figure S5 illustrates the finding in terms of two color coded maps based
on the intra-class correlation coefficient, a measure of reproducibility, extracted
from network-specific sample entropy distributions at single time scales. As the
figure suggests, sample entropy values over fine time scales (τ ≤5) are more re-
peatable than the values extracted at large scales. This finding was not surprising
because coarse-graining step of the multi-scale entropy analysis at large τ can re-
move original information from rsfMRI time series and reduce them into a series
of random fluctuations.

The biological underpinnings of multi-scale entropy has been subject to sev-
eral studies in the recent years (e.g., [1,21,73]). Ghanbari et al. [74] hypothesized
that more predictable neural signals establish synchronized links between remote
brain regions and, therefore, facilitate long-range information processing of func-
tional brain networks. Also, increasingly random signals are related to the local
firing of neural populations. This dichotomy has been also reported for coarse-fine
time scales of multi-scale entropy: fine scale values correspond to local informa-
tion processing of brain networks, while coarse scale values deal with long-range
communications [1, 21, 40, 75]. Functional brain connectivity may play an impor-
tant role here. In fact, functional brain connectivity and temporal complexity of
RSNs represent a scale-dependant relationship with a negative correlation at fine
scales (small values of τ) and a positive correlation at coarse scales (large values
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of τ) [1]. Our results not only reinforce this finding (see Figure 8), but also they
suggest that the brain regions with highest mean temporal complexity are mainly
located across the default mode network, frontoparietal network and dorsal atten-
tion network (see Figure 7). These regions have also been reported as having high
participation coefficients in the functional brain networks and therefore, playing
as connector nodes in the brain [76, 77]. The overlap between the participation
coefficient and temporal complexity brain maps may suggest a link between RSN
complexity and integration of various cognitive functions in the brain. As Figure
7 illustrates, the temporal complexity patterns of rsfMRI are asymmetrical across
the brain (e.g. frontal, temporal, and primary motor regions). This observation is
in line with the lateralization of human brain organization and cognition [78].

The impact of rsfMRI preprocessing has been subject to extensive research
(see [79–82], for examples). However, there is still no complete agreement on the
most appropriate’ rsfMRI preprocessing pipeline, as this depends on several factors
such as the MRI scanner type, scanning parameters, subject-specific movement
artifacts, health conditions and nature of the study (e.g., whether it is a resting
state study or an event-related study). The rsfMRI datasets of this study were
preprocessed using a customized pipeline for the HCP project that includes ICA-
FIX [46]. There is evidence suggesting that ICA-FIX is robust in reducing artefacts
in large rsfMRI datasets. That is why it has been the recommended rsfMRI pre-
processing pipeline by the HCP because it allows for ‘combined cortical surface
and subcortical volume analysis’ [46], a requirement for the cortical-subcortical
multi-scale entropy analysis of this study. Also, motion artefact removal using
the FIX-ICA method [47, 83] has been shown to result in significantly improved
RSN reproducibility, regardless of the recording conditions [84]. The choice of
brain parcellation is another impactful factor in the temporal complexity analysis
of rsfMRI which defines the spatial extent and morphology of ROIs and RSNs. It
is important to use non-overlapping brain parcels (e.g., the brain atlas [60] used
in tis study) RSNs in order to avoid any interference of complex dynamics across
brain regions. An example of an overlapping brain parcellation is the definition of
ROIs based on principal components of brain function.

A limitation of multi-scale entropy for temporal complexity analysis of func-
tional brain networks originates from the general framework of sample and multi-
scale entropy analyses as uni-variate methods. This means that the input signal to
these measures is always one-dimensional. In the context of this study, ROI-specific
multi-scale entropy patterns only capture the local aspects of regionally averaged
rsfMRI signals and do not measure interactions between brain regions necessarily.
Although we considered pair-wise relationships between the complexity distribu-
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tions of RSNs (see Figures S6 and S7), it is not a substitute for multivariate com-
plexity measures. It also speaks to the necessity of developing multivariate versions
of sample/multi-scale entropy measures which can deal with a more global picture
of dynamic brain function at once (for example, see [85]).

5 Conclusion
Functional brain networks represent distinctive signatures of temporal complexity
which can be quantified through multi-scale entropy analysis of rsfMRI. This ob-
servation is robust over a large cohort of healthy subjects and reproducible over
rsfMRI recording sessions. Head motion has a significantly lower temporal com-
plexity than RSNs. Also, there is likely a strong relationship between temporal
complexity of RSNs and higher-order cognition (fluid intelligence).

Acknowledgement
AO acknowledges financial support through the Eurotech Postdoc Program, co-
funded by the European Commission under its framework program Horizon 2020
(Grant Agreement number 754462). This study was supported by the National
Health and Medical Research Council (NHMRC) of Australia (no 628952). The
Florey Institute of Neuroscience and Mental Health acknowledges the strong sup-
port from the Victorian Government and in particular the funding from the Op-
erational Infrastructure Support Grant. We also acknowledge the facilities, and
the scientific and technical assistance of the National Imaging Facility (NIF) at
the Florey node and The Victorian Biomedical Imaging Capability (VBIC). GJ
is supported by an NHMRC practitioner’s fellowship (no 1060312). The primary
rsfMRI data in this study was provided by the Human Connectome Project, WU-
Minn Consortium (1U54MH091657; Principal Investigators: David Van Essen and
Kamil Ugurbil) funded by the 16 National Institutes of Health (NIH) institutes
and centers that support the NIH Blueprint for Neuroscience Research; and by the
McDonnell Center for Systems Neuroscience at Washington University.

Conflicts of interest
The authors declare no conflict of interest.

23

                  



6 Supplementary materials

Temporal complexity of downsampled RSNs (r=0.15 and
downsampling rate of 2)

Figure S1: The effect of downsampling on the multi-scale entropy curves of HCP, averaged
over 1000 subjects and four rsfMRI runs. (A)-(C): Error bars of multi-scale entropy curves
after downsampling of rsfMRI time series at the rate of 2 for the embedding dimensions
m=2,3,4 and the tolerance parameter r=0.15. The entropy curves have been color-coded
according to their complexity indices (normalized area under their curve). (D)-(F): Mean plots of
the complexity index values extracted from the multi-scale entropy curves of (A)-(C), respectively.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs

.
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Temporal complexity of downsampled RSNs (r=0.5 and downsampling
rate of 4)

Figure S2: The effect of downsampling on the multi-scale entropy curves of HCP, averaged
over 1000 subjects and four rsfMRI runs. (A)-(C): Error bars of multi-scale entropy curves
after downsampling of rsfMRI time series at the rate of 4 for the embedding dimensions
m=2,3,4 and the tolerance parameter r=0.5. The entropy curves have been color-coded
according to their complexity indices (normalized area under their curve). (D)-(F): Mean plots of
the complexity index values extracted from the multi-scale entropy curves of (A)-(C), respectively.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs

.

References
[1] I.M. McDonough and K. Nashiro. Network complexity as a measure of in-

formation processing across resting-state networks: evidence from the human
connectome project. Frontiers in Human Neuroscience, 8:409, 2014.

[2] Hae-Jeong Park and Karl Friston. Structural and functional brain networks:
From connections to cognition. Science, 342(6158), 2013.

[3] D.S. Bassett and E. Bullmore. Small-world brain networks. Neuroscientist,
12(6):512–523, Dec 2006.

25

                  



Temporal complexity of downsampled RSNs (r=0.15 and
downsampling rate of 4)

Figure S3: The effect of downsampling on the multi-scale entropy curves of HCP, averaged
over 1000 subjects and four rsfMRI runs. (A)-(C): Error bars of multi-scale entropy curves
after downsampling of rsfMRI time series at the rate of 4 for the embedding dimensions
m=2,3,4 and the tolerance parameter r=0.15. The entropy curves have been color-coded
according to their complexity indices (normalized area under their curve). (D)-(F): Mean plots of
the complexity index values extracted from the multi-scale entropy curves of (A)-(C), respectively.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs

.

[4] B. Biswal, F.Z. Yetkin, V.M. Haughton, and J.S. Hyde. Functional connectiv-
ity in the motor cortex of resting human brain using echo-planar MRI. Magn
Reson Med, 34(4):537–541, Oct 1995.

[5] Christian F Beckmann, Marilena DeLuca, Joseph T Devlin, and Stephen M
Smith. Investigations into resting-state connectivity using independent com-
ponent analysis. Philosophical Transactions of the Royal Society B: Biological
Sciences, 360(1457):1001–1013, 2005.

[6] Michael D. Fox, Abraham Z. Snyder, Justin L. Vincent, Maurizio Corbetta,
David C. Van Essen, and Marcus E. Raichle. The human brain is intrinsically
organized into dynamic, anticorrelated functional networks. Proceedings of
the National Academy of Sciences, 102(27):9673–9678, 2005.

26

                  



Permutation testing of the multiple regression analysis

Figure S4: Empirical null distributions of the Spearman correlation coefficients obtained
through a permutation testing with 10000 shuffling over subjects through multiple regression
analysis between temporal complexity of RSNs (as output of the model) and five behavioural
variables (as predictors). The dashed vertical line in each panel illustrates the Spearman correla-
tion coefficient between the original complexity values (without shuffling) and their predictions.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs.
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VMV1 = ventro-medial visual areas, TE1m = middle temporal gyrus, Ig = insular granular
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Test-retest analysis over four rsfMRI runs at different temporal
resolutions

Figure S5: Test-retest analysis of the multi-scale entropy curves of the HCP database over 1000
subjects and four scanning sessions at the embedding dimension m=2, the tolerance parameters
r=0.15,0.5 and three temporal resolutions of rsfMRI. The colors show the intra-class correlation
coefficient values ranging from 0 to 1. The values below 0.4 show poor replicability, values between
0.4 to 0.6 show fair replicability, between 0.6 to 0.8 show good replicability and above 0.8 imply
excellent reliability (do not exist in the above maps). Abbreviation: FP = Frontoparietal, DA
= Dorsal Attention, DMN = Default mode network, VIS = Visual, SM = Sensorimotor, VA =
Ventral Attention, SUBC = Sub-cortical, L = Limbic. See [51] for the illustrations of RSNs

.
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Summary of the effect size analysis results with downsampling for
r=0.5

Figure S6: Summary of the effect size analysis of multi-scale entropy results at r=0.5 and
m=2. In the table, g is the Hedges’ g measure, C1 and C2 denote the lower and upper limits
of the confidence interval of the Hedges’ g after 10000 permutations and p represent the asso-
ciated p-value where a value of 0.00 means p ≤ 0.001 and corrected for multiple comparisons.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs.
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Summary of the effect size analysis results with downsampling for
r=0.15

Figure S7: Summary of the effect size analysis of multi-scale entropy results at r=0.15 and
m=2. In the table, g is the Hedges’ g measure, C1 and C2 denote the lower and upper limits
of the confidence interval of the Hedges’ g after 10000 permutations and p represent the asso-
ciated p-value where a value of 0.00 means p ≤ 0.001 and corrected for multiple comparisons.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs.
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Step-wise regression analysis results between temporal complexity of
RSNs and behaviour for r=0.5 and no downsampling of rsfMRI

Figure S8: Summary of the multiple regression analysis results between rsfMRI complexity
and five HCP behavioural variables for r=0.5, m=2 and no downsampling of rsfMRI. The
variables are as follows: Variable 1 (Flanker_Unadj or the Flanker inhibition measure), Variable
2 (CardSort_Unadj or Card Sorting flexibility measure), Variable 3 (WM_Task_Acc or N-back
working memory measure), Variable 4 (PMAT24_A_CR or Ravens fluid intelligence measure)
and Variable 5 (Relational_Task_Acc or the relational task) [56]. All p-values were corrected
for multiple comparisons using the false discovery rate method at the significance level of 0.05.
Significant p-values and their associated β coefficients have been highlighted with bold font
and underscore. A p-value of 0.00 means p ≤ 0.001 and corrected for multiple comparisons.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs.

Step-wise regression analysis results between temporal complexity of
RSNs and behaviour for r=0.15 and no downsampling of rsfMRI

Figure S9: Summary of the multiple regression analysis results between rsfMRI complexity
and five HCP behavioural variables for r=0.15, m=2 and no downsampling of rsfMRI.
The variables are as follows: Variable 1 (Flanker_Unadj or the Flanker inhibition measure),
Variable 2 (CardSort_Unadj or Card Sorting flexibility measure), Variable 3 (WM_Task_Acc
or N-back working memory measure), Variable 4 (PMAT24_A_CR or Ravens fluid intelligence
measure) and Variable 5 (Relational_Task_Acc or the relational task) [56]. All p-values were
corrected for multiple comparisons using the false discovery rate method at the significance level
of 0.05. Significant p-values and their associated β coefficients have been highlighted with bold
font and underscore. A p-value of 0.00 means p ≤ 0.001 and corrected for multiple comparisons.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs.
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Step-wise regression analysis results between temporal complexity of
RSNs and behaviour for r=0.5 and rsfMRI downsampling at the rate

of 2

Figure S10: Summary of the multiple regression analysis results between rsfMRI complexity and
five HCP behavioural variables for r=0.5, m=2 and downsampling of rsfMRI at the rate
of 2. The variables are as follows: Variable 1 (Flanker_Unadj or the Flanker inhibition measure),
Variable 2 (CardSort_Unadj or Card Sorting flexibility measure), Variable 3 (WM_Task_Acc
or N-back working memory measure), Variable 4 (PMAT24_A_CR or Ravens fluid intelligence
measure) and Variable 5 (Relational_Task_Acc or the relational task) [56]. All p-values were
corrected for multiple comparisons using the false discovery rate method at the significance level
of 0.05. Significant p-values and their associated β coefficients have been highlighted with bold
font and underscore. A p-value of 0.00 means p ≤ 0.001 and corrected for multiple comparisons.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs.

Step-wise regression analysis results between temporal complexity of
RSNs and behaviour for r=0.15 and rsfMRI downsampling at the rate

of 2

Figure S11: Summary of the multiple regression analysis results between rsfMRI complexity and
five HCP behavioural variables for r=0.15, m=2 and downsampling of rsfMRI at the rate
of 2. The variables are as follows: Variable 1 (Flanker_Unadj or the Flanker inhibition measure),
Variable 2 (CardSort_Unadj or Card Sorting flexibility measure), Variable 3 (WM_Task_Acc
or N-back working memory measure), Variable 4 (PMAT24_A_CR or Ravens fluid intelligence
measure) and Variable 5 (Relational_Task_Acc or the relational task) [56]. All p-values were
corrected for multiple comparisons using the false discovery rate method at the significance level
of 0.05. Significant p-values and their associated β coefficients have been highlighted with bold
font and underscore. A p-value of 0.00 means p ≤ 0.001 and corrected for multiple comparisons.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs.
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Step-wise regression analysis results between temporal complexity of
RSNs and behaviour for r=0.5 and rsfMRI downsampling at the rate

of 4

Figure S12: Summary of the multiple regression analysis results between rsfMRI complexity and
five HCP behavioural variables for r=0.5, m=2 and downsampling of rsfMRI at the rate
of 4. The variables are as follows: Variable 1 (Flanker_Unadj or the Flanker inhibition measure),
Variable 2 (CardSort_Unadj or Card Sorting flexibility measure), Variable 3 (WM_Task_Acc
or N-back working memory measure), Variable 4 (PMAT24_A_CR or Ravens fluid intelligence
measure) and Variable 5 (Relational_Task_Acc or the relational task) [56]. All p-values were
corrected for multiple comparisons using the false discovery rate method at the significance level
of 0.05. Significant p-values and their associated β coefficients have been highlighted with bold
font and underscore. A p-value of 0.00 means p ≤ 0.001 and corrected for multiple comparisons.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs.

Step-wise regression analysis results between temporal complexity of
RSNs and behaviour for r=0.15 and rsfMRI downsampling at the rate

of 4

Figure S13: Summary of the multiple regression analysis results between rsfMRI complexity and
five HCP behavioural variables for r=0.15, m=2 and downsampling of rsfMRI at the rate
of 4. The variables are as follows: Variable 1 (Flanker_Unadj or the Flanker inhibition measure),
Variable 2 (CardSort_Unadj or Card Sorting flexibility measure), Variable 3 (WM_Task_Acc
or N-back working memory measure), Variable 4 (PMAT24_A_CR or Ravens fluid intelligence
measure) and Variable 5 (Relational_Task_Acc or the relational task) [56]. All p-values were
corrected for multiple comparisons using the false discovery rate method at the significance level
of 0.05. Significant p-values and their associated β coefficients have been highlighted with bold
font and underscore. A p-value of 0.00 means p ≤ 0.001 and corrected for multiple comparisons.
Abbreviation: FP = Frontoparietal, DA = Dorsal Attention, DMN = Default mode network,
VIS = Visual, SM = Sensorimotor, VA = Ventral Attention, SUBC = Sub-cortical, L = Limbic.
See [51] for the illustrations of RSNs.

33

                  



Neurosci, 1(2):100–115, 2017.

[19] W.H. Thompson, P. Brantefors, and P. Fransson. From static to temporal
network theory: Applications to functional brain connectivity. Network Neu-
roscience, 1(2):69–99, 2017.

[20] D.J.J. Wang, K. Jann, C. Fan, Y. Qiao, Y.F. Zang, H. Lu, and Y. Yang.
Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and
Its Relationship With Functional Connectivity. Frontiers in Neuroscience,
12:352, 2018.

[21] Danny J. J. Wang, Kay Jann, Chang Fan, Yang Qiao, Yu-Feng Zang, Han-
bing Lu, and Yihong Yang. Neurophysiological Basis of Multi-Scale Entropy of
Brain Complexity and Its Relationship With Functional Connectivity. Fron-
tiers in Neuroscience, 12, May 2018.

[22] Xiao Liu and Jeff H. Duyn. Time-varying functional network information
extracted from brief instances of spontaneous brain activity. Proceedings of
the National Academy of Sciences, 110(11):4392–4397, 2013.

[23] Catie Chang and Gary H. Glover. Time–frequency dynamics of resting-state
brain connectivity measured with fmri. NeuroImage, 50(1):81 – 98, 2010.

[24] Maria Giulia Preti, Thomas AW Bolton, and Dimitri Van De Ville. The dy-
namic functional connectome: State-of-the-art and perspectives. NeuroImage,
160:41 – 54, 2017. Functional Architecture of the Brain.

[25] Christopher W. Lynn and Danielle S. Bassett. The physics of brain network
structure, function and control. Nature Reviews Physics, 1:318–332, 2018.

[26] A.L. Goldberger, D.R. Rigney, B.J. West, and A.L. Goldberger. Chaos and
fractals in human physiology. Sci. Am., 262(2):42–49, Feb 1990.

[27] A. L. Goldberger. Non-linear dynamics for clinicians: chaos theory, fractals,
and complexity at the bedside. Lancet (London, England), 347(9011):1312–
1314, May 1996.

[28] James M. Shine, Michael Breakspear, Peter T. Bell, Kaylena A. Eh-
goetz Martens, Richard Shine, Oluwasanmi Koyejo, Olaf Sporns, and Rus-
sell A. Poldrack. Human cognition involves the dynamic integration of neural
activity and neuromodulatory systems. Nature Neuroscience, 22(2):289–296,
2019.

34

                  



[29] Dimitri Van De Ville, Juliane Britz, and Christoph M. Michel. Eeg microstate
sequences in healthy humans at rest reveal scale-free dynamics. Proceedings
of the National Academy of Sciences, 107(42):18179–18184, 2010.

[30] Juliane Britz, Dimitri Van De Ville, and Christoph M. Michel. Bold correlates
of eeg topography reveal rapid resting-state network dynamics. NeuroImage,
52(4):1162 – 1170, 2010.

[31] Sergi Valverde, Sebastian Ohse, Malgorzata Turalska, Bruce J. West, and
Jordi Garcia-Ojalvo. Structural determinants of criticality in biological net-
works. Frontiers in Physiology, 6:127, 2015.

[32] Michael J Hawrylycz, Ed S Lein, Angela L. Guillozet-Bongaarts, Elaine H.
Shen, Lydia Ng, Jeremy A. Miller, Louie N. van de Lagemaat, Kimberly Anne
Smith, Amanda J. Ebbert, Zackery L. Riley, Chris Abajian, Christian F.
Beckmann, Amy Bernard, Darren Bertagnolli, Andrew F. Boe, Preston M.
Cartagena, M. Mallar Chakravarty, Mike Chapin, Jimmy Chong, Rachel A.
Dalley, Benedict D.T. Daly, Chinh Dang, Suvro Datta, Nick Dee, Tim Dol-
beare, Vance Faber, David Feng, David R. Fowler, Jeff Goldy, Benjamin W
Gregor, Zeb Haradon, David R. Haynor, John George Hohmann, Steve Hor-
vath, Robert E. Howard, A. Jeromin, Jayson M. Jochim, Marty Kinnunen,
Christopher D. Lau, Evan T. Lazarz, Changkyu Lee, Tracy A. Lemon, Ling
Li, Yang Li, John A Morris, Caroline C. Overly, Patrick D. Parker, Sheana E.
Parry, Melissa Reding, Joshua J. Royall, Jay Schulkin, Pedro Adolfo Se-
queira, Clifford R Slaughterbeck, Simón C. Smith, Andy J. Sodt, Susan M
Sunkin, Beryl E. Swanson, Marquis P. Vawter, Donald S. Williams, Paul E
Wohnoutka, Horst Ronald Zielke, Daniel H. Geschwind, Patrick R. Hof,
Stephen M. Smith, Christof Koch, Seth G. N. Grant, and Allan R. Jones. An
anatomically comprehensive atlas of the adult human brain transcriptome.
Nature, 489:391–399, 2012.

[33] Elena A. Allen, Eswar Damaraju, Sergey M. Plis, Erik B. Erhardt, Tom
Eichele, and Vince D. Calhoun. TrackingWhole-Brain Connectivity Dynamics
in the Resting State. Cerebral Cortex, 24(3):663–676, 11 2012.

[34] Enzo Tagliazucchi, Frederic Von Wegner, Astrid Morzelewski, Verena Brod-
beck, and Helmut Laufs. Dynamic bold functional connectivity in humans and
its electrophysiological correlates. Frontiers in Human Neuroscience, 6:339,
2012.

[35] Andrew Zalesky, Alex Fornito, Luca Cocchi, Leonardo L. Gollo, and Michael
Breakspear. Time-resolved resting-state brain networks. Proceedings of the
National Academy of Sciences, 111(28):10341–10346, 2014.

35

                  



[36] Amir Omidvarnia, Mangor Pedersen, Jennifer M. Walz, David N. Vaughan,
David F. Abbott, and Graeme D. Jackson. Dynamic regional phase synchrony
(dreps). Human Brain Mapping, 37(5):1970–1985, 2016.

[37] Mangor Pedersen, Amir Omidvarnia, Andrew Zalesky, and Graeme D.
Jackson. On the relationship between instantaneous phase synchrony and
correlation-based sliding windows for time-resolved fmri connectivity analy-
sis. NeuroImage, 181:85 – 94, 2018.

[38] Raphaël Liégeois, Jingwei Li, Ru Kong, Csaba Orban, Dimitri Van De Ville,
Tian Ge, Mert R Sabuncu, and B T Thomas Yeo. Resting brain dynamics
at different timescales capture distinct aspects of human behavior. Nature
communications, 10(1):2317, May 2019.

[39] Anthony Randal McIntosh, Natasa Kovacevic, and Roxane J. Itier. Increased
brain signal variability accompanies lower behavioral variability in develop-
ment. PLOS Computational Biology, 4(7):1–9, 07 2008.

[40] A.R. McIntosh, V. Vakorin, N. Kovacevic, H. Wang, A. Diaconescu, and A.B.
Protzner. Spatiotemporal dependency of age-related changes in brain signal
variability. Cereb. Cortex, 24(7):1806–1817, Jul 2014.

[41] M. Costa, A.L. Goldberger, and C.K. Peng. Multiscale entropy analysis of
complex physiologic time series. Phys. Rev. Lett., 89(6):068102, Aug 2002.

[42] M.D. Costa and A.L. Goldberger. Generalized multiscale entropy analysis:
Application to quantifying the complex volatility of human heartbeat time
series. Entropy, 17(3):1197–1203, 2015.

[43] J.S. Richman and J.R. Moorman. Physiological time-series analysis using ap-
proximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol.,
278(6):H2039–2049, Jun 2000.

[44] Voichiţa Maxim, Levent Şendur, Jalal Fadili, John Suckling, Rebecca Gould,
Rob Howard, and Ed Bullmore. Fractional gaussian noise, functional mri and
alzheimer’s disease. NeuroImage, 25(1):141 – 158, 2005.

[45] D.C. Van Essen, K. Ugurbil, E. Auerbach, D. Barch, T.E.J. Behrens, R. Bu-
cholz, A. Chang, L. Chen, M. Corbetta, S.W. Curtiss, S. Della Penna,
D. Feinberg, M.F. Glasser, N. Harel, A.C. Heath, L. Larson-Prior, D. Mar-
cus, G. Michalareas, S. Moeller, R. Oostenveld, S.E. Petersen, F. Prior, B.L.
Schlaggar, S.M. Smith, A.Z. Snyder, J. Xu, and E. Yacoub. The human con-
nectome project: A data acquisition perspective. NeuroImage, 62(4):2222 –
2231, 2012. Connectivity.

36

                  



[46] Matthew F. Glasser, Stamatios N. Sotiropoulos, J. Anthony Wilson, Timo-
thy S. Coalson, Bruce Fischl, Jesper L. Andersson, Junqian Xu, Saad Jbabdi,
Matthew Webster, Jonathan R. Polimeni, David C. Van Essen, and Mark
Jenkinson. The minimal preprocessing pipelines for the human connectome
project. NeuroImage, 80:105 – 124, 2013. Mapping the Connectome.

[47] Gholamreza Salimi-Khorshidi, GwenaÃ«lle Douaud, Christian F. Beckmann,
Matthew F. Glasser, Ludovica Griffanti, and Stephen M. Smith. Automatic
denoising of functional mri data: Combining independent component analysis
and hierarchical fusion of classifiers. NeuroImage, 90:449 – 468, 2014.

[48] Albert C. Yang, Shih-Jen Tsai, Cheng-Hung Yang, Chung-Hsun Kuo, Tai-Jui
Chen, and Chen-Jee Hong. Reduced physiologic complexity is associated with
poor sleep in patients with major depression and primary insomnia. Journal
of Affective Disorders, 131(1):179 – 185, 2011.

[49] Yan Niu, Bin Wang, Mengni Zhou, Jiayue Xue, Habib Shapour, Rui Cao,
Xiaohong Cui, Jinglong Wu, and Jie Xiang. Dynamic complexity of spon-
taneous bold activity in alzheimer’s disease and mild cognitive impairment
using multiscale entropy analysis. Frontiers in Neuroscience, 12:677, 2018.

[50] Wen-Chin Weng, George J. A. Jiang, Chi-Feng Chang, Wen-Yu Lu, Chun-
Yen Lin, Wang-Tso Lee, and Jiann-Shing Shieh. Complexity of multi-channel
electroencephalogram signal analysis in childhood absence epilepsy. PLOS
ONE, 10(8):1–14, 08 2015.

[51] B. T. Thomas Yeo, Fenna M. Krienen, Jorge Sepulcre, Mert R. Sabuncu,
Danial Lashkari, Marisa Hollinshead, Joshua L. Roffman, Jordan W. Smoller,
Lilla Zöllei, Jonathan R. Polimeni, Bruce Fischl, Hesheng Liu, and Randy L.
Buckner. The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. Journal of Neurophysiology, 106(3):1125–1165, 2011.
PMID: 21653723.

[52] Larry V. Hedges. Distribution theory for glass’s estimator of effect size and
related estimators. Journal of Educational Statistics, 6(2):107–128, 1981.

[53] Harald Hentschke and Maik C Stüttgen. Computation of measures of effect
size for neuroscience data sets. The European journal of neuroscience, 34
12:1887–94, 2011.

[54] Duncan J. Hodkinson, Kristina Krause, Nadine Khawaja, Tara F. Renton,
John P. Huggins, William Vennart, Michael A. Thacker, Mitul A. Mehta,

37

                  



Fernando O. Zelaya, Steven C.R. Williams, and Matthew A. Howard. Quan-
tifying the test–retest reliability of cerebral blood flow measurements in a clin-
ical model of on-going post-surgical pain: A study using pseudo-continuous
arterial spin labelling. NeuroImage: Clinical, 3:301 – 310, 2013.

[55] Patrick E Shrout and Joseph L. Fleiss. Intraclass correlations: uses in assess-
ing rater reliability. Psychological bulletin, 86 2:420–8, 1979.

[56] Deanna M. Barch, Gregory C. Burgess, Michael P. Harms, Steven E. Petersen,
Bradley L. Schlaggar, Maurizio Corbetta, Matthew F. Glasser, Sandra Cur-
tiss, Sachin Dixit, Cindy Feldt, Dan Nolan, Edward Bryant, Tucker Hartley,
Owen Footer, James M. Bjork, Russ Poldrack, Steve Smith, Heidi Johansen-
Berg, Abraham Z. Snyder, and David C. Van Essen. Function in the human
connectome: Task-fmri and individual differences in behavior. NeuroImage,
80:169 – 189, 2013. Mapping the Connectome.

[57] N.R. Draper and H. Smith. Applied regression analysis, by N.R. Draper and
H. Smith. John Wiley and Sons, 1967.

[58] Madalena Costa, Ary L. Goldberger, and C.-K. Peng. Multiscale entropy
analysis of biological signals. Phys. Rev. E, 71:021906, Feb 2005.

[59] Jonathan D. Power, Anish Mitra, Timothy O. Laumann, Abraham Z. Snyder,
Bradley L. Schlaggar, and Steven E. Petersen. Methods to detect, character-
ize, and remove motion artifact in resting state fmri. NeuroImage, 84:320 –
341, 2014.

[60] Matthew F. Glasser, Timothy S. Coalson, Emma C. Robinson, Carl D.
Hacker, John Harwell, Essa Yacoub, Kamil Ugurbil, Jesper Andersson, Chris-
tian F. Beckmann, Mark Jenkinson, Stephen M. Smith, and David C.
Van Essen. A multi-modal parcellation of human cerebral cortex. Nature,
536(7615):171–178, 2016.

[61] R. Matthew Hutchison, Thilo Womelsdorf, Elena A. Allen, Peter A. Ban-
dettini, Vince D. Calhoun, Maurizio Corbetta, Stefania Della Penna, Jeff
H. Duyn, Gary H. Glover, Javier Gonzalez-Castillo, Daniel A. Handwerker,
Shella Keilholz, Vesa Kiviniemi, David A. Leopold, Francesco de Pasquale,
Olaf Sporns, Martin Walter, and Catie Chang. Dynamic functional connec-
tivity: Promise, issues, and interpretations. October 2013.

[62] Jonas Richiardi, Sophie Achard, Horst Bunke, and Dimitri Van De Ville. Ma-
chine learning with brain graphs: Predictive modeling approaches for func-
tional imaging in systems neuroscience. IEEE Signal Processing Magazine,
30:58–70, 2013.

38

                  



[63] Jonas Richiardi, Hamdi Eryilmaz, Sophie Schwartz, Patrik Vuilleumier, and
Dimitri Van De Ville. Decoding brain states from fmri connectivity graphs.
NeuroImage, 56:616–626, 2011.

[64] Christoph Kirst, Marc Timme, and Demian Battaglia. Dynamic information
routing in complex networks. Nature Communications, 7, 2016.

[65] Bruce Fischl, Allison A. Stevens, Niranjini Rajendran, B. T. Thomas
Yeo, Douglas N. Greve, Koen Van Leemput, Jonathan R. Polimeni, Sita
Kakunoori, Randy L. Buckner, Jennifer Pacheco, David H. Salat, Jennifer
Melcher, Matthew P. Frosch, Bradley T. Hyman, P. Ellen Grant, Bruce R.
Rosen, André J. W. van der Kouwe, Graham C. Wiggins, Lawrence L. Wald,
and Jean C. Augustinack. Predicting the location of entorhinal cortex from
MRI. NeuroImage, 47(1):8–17, August 2009.

[66] Svenja Caspers, Simon B. Eickhoff, Stefan Geyer, Filip Scheperjans, Hartmut
Mohlberg, Karl Zilles, and Katrin Amunts. The human inferior parietal lobule
in stereotaxic space. Brain Structure and Function, 212(6):481–495, August
2008.

[67] Raymond B. Cattell. Theory of fluid and crystallized intelligence: A critical
experiment. Journal of Educational Psychology, 54(1):1–22, 1963.

[68] Helmut Laufs, Enzo Tagliazucchi, Frederic von Wegner, Kolja Jahnke, Astrid
Morzelewski, Sergey Borisov, and H. Steinmetz. Influence of vigilance on
resting state brain activity. Klin Neurophysiol, 43:V150, 2012.

[69] Hui Shen, Zhenfeng Li, Jian Qin, Qiang Liu, Lubin Wang, Ling-Li Zeng, Hong
Li, and Dewen Hu. Changes in functional connectivity dynamics associated
with vigilance network in taxi drivers. NeuroImage, 124:367 – 378, 2016.

[70] Chi Wah Wong, Valur T. Olafsson, Omer Tal, and Thomas T. Liu. The
amplitude of the resting-state fmri global signal is related to eeg vigilance
measures. NeuroImage, 83:983–990, 2013.

[71] Ze Wang, Yin Li, Anna Rose Childress, and John A. Detre. Brain entropy
mapping using fmri. PLOS ONE, 9(3):1–8, 03 2014.

[72] Amir Omidvarnia, Mostefa Mesbah, Mangor Pedersen, and Graeme Jackson.
Range entropy: A bridge between signal complexity and self-similarity. En-
tropy, 20(12), 2018.

[73] Mianxin Liu, Chenchen Song, Yuqi Liang, Thomas Knöpfel, and Changsong
Zhou. Assessing spatiotemporal variability of brain spontaneous activity by

39

                  



multiscale entropy and functional connectivity. NeuroImage, 198:198 – 220,
2019.

[74] Yasser Ghanbari, Luke Bloy, J Christopher Edgar, Lisa Blaskey, Ragini
Verma, and Timothy P L Roberts. Joint analysis of band-specific functional
connectivity and signal complexity in autism. Journal of autism and develop-
mental disorders, 45(2):444—460, February 2015.

[75] Vasily A. Vakorin, Sarah Lippé, and Anthony R. McIntosh. Variability of
brain signals processed locally transforms into higher connectivity with brain
development. Journal of Neuroscience, 31(17):6405–6413, 2011.

[76] Maxwell A. Bertolero, B. T. Thomas Yeo, and Mark D’Esposito. The modular
and integrative functional architecture of the human brain. Proceedings of the
National Academy of Sciences, 112(49):E6798–E6807, 2015.

[77] Maxwell A. Bertolero, B.T. Thomas Yeo, Danielle S. Bassett, and Mark
D’Esposito. A mechanistic model of connector hubs, modularity and cog-
nition. Nature human behaviour, 2(10):765–777, October 2018.

[78] Sandra F. Witelson. Brain Asymmetry, Functional Aspects. In J. Allan
Hobson, editor, States of Brain and Mind, Readings from the Encyclopedia
of Neuroscience, pages 13–16. Birkhäuser, Boston, MA, 1988.

[79] Chaogan Yan and Yufeng Zang. Dparsf: a matlab toolbox for "pipeline" data
analysis of resting-state fmri. Frontiers in Systems Neuroscience, 4:13, 2010.

[80] Oscar Esteban, Christopher J. Markiewicz, Ross W. Blair, Craig A. Moodie,
A. Ilkay Isik, Asier Erramuzpe, James D. Kent, Mathias Goncalves, Elizabeth
DuPre, Madeleine Snyder, Hiroyuki Oya, Satrajit S. Ghosh, Jessey Wright,
Joke Durnez, Russell A. Poldrack, and Krzysztof J. Gorgolewski. fMRIPrep: a
robust preprocessing pipeline for functional MRI. Nature Methods, 16(1):111–
116, January 2019. Number: 1 Publisher: Nature Publishing Group.

[81] Jonathan D. Power, Kelly A. Barnes, Abraham Z. Snyder, Bradley L. Schlag-
gar, and Steven E. Petersen. Spurious but systematic correlations in functional
connectivity mri networks arise from subject motion. NeuroImage, 59(3):2142
– 2154, 2012.

[82] Xi-Nian Zuo, Ting Xu, Lili Jiang, Zhi Yang, Xiao-Yan Cao, Yong He, Yu-Feng
Zang, F. Xavier Castellanos, and Michael P. Milham. Toward reliable charac-
terization of functional homogeneity in the human brain: Preprocessing, scan
duration, imaging resolution and computational space. NeuroImage, 65:374 –
386, 2013.

40

                  



[83] Ludovica Griffanti, Gholamreza Salimi-Khorshidi, Christian F. Beckmann,
Edward J. Auerbach, Gwenaëlle Douaud, Claire E. Sexton, Enikő Zsoldos,
Klaus P. Ebmeier, Nicola Filippini, Clare E. Mackay, Steen Moeller, Jun-
qian Xu, Essa Yacoub, Giuseppe Baselli, Kamil Ugurbil, Karla L. Miller, and
Stephen M. Smith. ICA-based artefact removal and accelerated fMRI acqui-
sition for improved resting state network imaging. NeuroImage, 95:232–247,
July 2014.

[84] Raimon H.R. Pruim, Maarten Mennes, Jan K. Buitelaar, and Christian F.
Beckmann. Evaluation of ica-aroma and alternative strategies for motion
artifact removal in resting state fmri. NeuroImage, 112:278 – 287, 2015.

[85] M. U. Ahmed and D. P. Mandic. Multivariate multiscale entropy analysis.
IEEE Signal Processing Letters, 19(2):91–94, 2012.

41

                  



Amir Omidvarnia: Conceptualization, Methodology, Software, Formal analysis, Validation, Writing 
- Original draft preparation. Andrew Zalesky: Conceptualization, Methodology, Validation, Writing - 
Review & Editing. Sina Mansour: Data preprocessing, Writing - Review & Editing. Dimitri Van de 
Ville: Conceptualization, Methodology, Validation, Writing - Review & Editing. Graeme Jackson: 
Conceptualization, Validation, Writing - Review & Editing. Mangor Pedersen: Conceptualization, 
Methodology, Validation, Writing - Review & Editing. 

 

                  


