Please use this identifier to cite or link to this item: http://ahro.austin.org.au/austinjspui/handle/1/9582
Title: Second generation anti-MUC1 peptide monoclonal antibodies.
Authors: Xing, Pei Xiang;Prenzoska, J;Quelch, K;McKenzie, Ian F C
Affiliation: Austin Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.
Issue Date: 15-Apr-1992
Citation: Cancer Research; 52(8): 2310-7
Abstract: Second generation antibodies to mammary mucins were produced by immunizing mice with a peptide with a sequence deduced from that of the MUC1 complementary DNA sequence (PAHGVTSAPDTRPAPGSTAP). Four monoclonal antibodies (BCP7-10) were produced which gave different reactions. BCP8 was similar in tissue reactivity (by immunoperoxidase staining) to anti-breast cancer or anti-human milk fat globule membranes (HMFG) antibodies and reacted strongly with most breast cancers and a proportion of other adenocarcinomas, whether formalin fixed or fresh, and reacted less strongly with some normal tissues. The three other antibodies (BCP7, BCP9, BCP10) reacted only with fresh tissues or a single cell line (LS174T of colon cancer origin) and gave variable weak reactions. Like many anti-mucin antibodies BCP8 reacted with HMFG, but more strongly with deglycosylated HMFG; analysis with peptides by enzyme-linked immunosorbent assay indicated reactivity with an epitope contained in the amino acid motif PDTR and using the pepscan method, the minimum epitope was DTR. MAbs BCP7, BCP9, and BCP10 did not react with HMFG; substantial reactions were obtained with deglycosylated HMFG for BCP7 and weaker reactions with BCP9 and BCP10. The finding that BCP7 reacted with breast cancer tissues and deglycosylated HMFG suggested that the epitope recognized by BCP7 was masked in native form and exposed in cancer, indicating that BCP7 could be a useful agent for analyzing differences between normal and cancer mucins. The amino acid epitopes for these antibodies were VTSA (BCP7), GSTAP (BCP9), and RPAP (BCP10). For BCP8, amino acid substitution analysis of SAPDTR indicated that substitutions were poorly tolerated (except Q for T and L/Y for R), contrasting with the substitution analysis of anti-mucin antibody reactions where virtually any amino acid can be substituted for T, indicating that in the native state T (threonine) may be O-glycosylated. The use of synthetic peptides to produce antibodies similar to those produced using crude mucins or tumor extracts represents a major advance in the production of antitumor reagents.
Internal ID Number: 1373108
URI: http://ahro.austin.org.au/austinjspui/handle/1/9582
URL: http://www.ncbi.nlm.nih.gov/pubmed/1373108
Type: Journal Article
Subjects: Amino Acid Sequence
Animals
Antibodies, Monoclonal.chemistry.immunology
Epitopes.chemistry.immunology
Humans
Mice
Molecular Sequence Data
Mucins.chemistry.immunology
Appears in Collections:Journal articles

Files in This Item:
There are no files associated with this item.


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.