Please use this identifier to cite or link to this item: http://ahro.austin.org.au/austinjspui/handle/1/9439
Title: Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy.
Authors: Forbes, Josephine M;Cooper, Mark E;Thallas, Vicki;Burns, Wendy C;Thomas, Merlin C;Brammar, Gail C;Lee, Fook-Thean;Grant, Sharon L;Burrell, Louise M;Burrell, Louise A;Jerums, George;Osicka, Tanya M
Affiliation: Department of Medicine, University of Melbourne, Austin and Repatriation Medical Centre, West Heidelberg, Australia. josephine.forbes@baker.edu.au
Issue Date: 1-Nov-2002
Citation: Diabetes; 51(11): 3274-82
Abstract: The effect of ACE inhibition on the formation of advanced glycation end products (AGEs) and oxidative stress was explored. Streptozocin-induced diabetic animals were randomized to no treatment, the ACE inhibitor ramipril (3 mg/l), or the AGE formation inhibitor aminoguanidine (1 g/l) and followed for 12 weeks. Control groups were followed concurrently. Renal AGE accumulation, as determined by immunohistochemistry and both serum and renal fluorescence, were increased in diabetic animals. This was attenuated by both ramipril and aminoguanidine to a similar degree. Nitrotyrosine, a marker of protein oxidation, also followed a similar pattern. The receptor for AGEs, gene expression of the membrane-bound NADPH oxidase subunit gp91phox, and nuclear transcription factor-kappaB were all increased by diabetes but remained unaffected by either treatment regimen. Two other AGE receptors, AGE R2 and AGE R3, remained unchanged for the duration of the study. The present study has identified a relationship between the renin-angiotensin system and the accumulation of AGEs in experimental diabetic nephropathy that may be linked through oxidative stress
Internal ID Number: 12401719
URI: http://ahro.austin.org.au/austinjspui/handle/1/9439
URL: http://www.ncbi.nlm.nih.gov/pubmed/12401719
Type: Journal Article
Subjects: Angiotensin-Converting Enzyme Inhibitors.therapeutic use
Animals
Diabetes Mellitus, Experimental.blood.physiopathology
Diabetic Nephropathies.drug therapy
Disease Models, Animal
Glycosylation End Products, Advanced.metabolism
Guanidines.pharmacology
Male
Nitric Oxide Synthase.antagonists & inhibitors
Ramipril.pharmacology
Rats
Rats, Sprague-Dawley
Time Factors
Appears in Collections:Journal articles

Files in This Item:
There are no files associated with this item.


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.