Please use this identifier to cite or link to this item: http://ahro.austin.org.au/austinjspui/handle/1/12179
Title: Mapping of actionable mutations to histological subtype domains in lung adenocarcinoma: implications for precision medicine.
Authors: Wright, Gavin M;Do, Hongdo;Weiss, Jonathan;Alam, Naveed Z;Rathi, Vivek;Walkiewicz, Marzena;John, Thomas;Russell, Prudence A;Dobrovic, Alexander
Affiliation: University of Melbourne Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia.
Translational Genomics and Epigenomics Laboratory Ludwig Institute for Cancer Research Olivia Newton-John Cancer and Wellness Centre Heidelberg, Victoria, Australia.
Issue Date: 30-Apr-2014
Citation: Oncotarget; 5(8): 2107-15
Abstract: Precision medicine depends on the accurate identification of actionable mutations in a tumor sample. It is unknown how heterogeneous the distribution of such mutations can be in a tumor. Morphological (i.e. histopathological) heterogeneity is well described in lung adenocarcinoma and has been specifically recognized in the most recent official clinico-pathological classification. The most predominant subtype present is now used to classify each lung adenocarcinoma. No molecular profile exists to explain the intratumoral differences in lung adenocarcinoma morphology, despite the consistently observed association between specific predominant subtypes and poorer survival. Given a recent proposal stratifying lung adenocarcinoma into subtypes of differing metastatic potential, we questioned the assumption that major mutations are present uniformly throughout tumors; especially those showing discrete different subtypes. We selected formalin-fixed paraffin embedded lung adenocarcinoma specimens that showed discrete areas of different subtypes, extracted subtype DNA samples from those areas and screened for mutations in hotspot regions of the EGFR, KRAS and BRAF genes using high resolution melting. Sanger sequencing was used to confirm all identified mutations. Chromogenic in situ hybridization (CISH) was used to identify mutant allele specific imbalances in tumors with EGFR mutations. Interestingly, we found that KRAS and BRAF mutations could be confined to morphological domains of higher grade. On the other hand, EGFR mutations were found through all histological subtypes in each tumor consistent with the driver status of this mutation. Intratumoral heterogeneity has major implications for tumorigenesis, chemoresistance and the role of histopathology in molecular screening for precision medicine. This study not only confirms that intratumoral mutational heterogeneity does occur, but also that it is associated with morphologically distinct regions in some tumors. From a practical perspective, small biopsies may not adequately represent a tumor's full mutational profile, particularly for later arising but prognostically important mutations such as those in the KRAS and BRAF genes.
Internal ID Number: 24742923
URI: http://ahro.austin.org.au/austinjspui/handle/1/12179
URL: http://www.ncbi.nlm.nih.gov/pubmed/24742923
Type: Journal Article
Subjects: Adenocarcinoma.genetics.pathology
Base Sequence
DNA Mutational Analysis
Humans
In Situ Hybridization
Individualized Medicine
Lung Neoplasms.genetics.pathology
Molecular Sequence Data
Mutation
Polymerase Chain Reaction
Proto-Oncogene Proteins.genetics
Proto-Oncogene Proteins B-raf.genetics
ras Proteins.genetics
Appears in Collections:Journal articles

Files in This Item:
There are no files associated with this item.


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.