Please use this identifier to cite or link to this item: http://ahro.austin.org.au/austinjspui/handle/1/12112
Title: Gender influence on white matter microstructure: a tract-based spatial statistics analysis.
Authors: Kanaan, Richard A;Chaddock, Christopher;Allin, Matthew;Picchioni, Marco M;Daly, Eileen;Shergill, Sukhi S;McGuire, Philip K
Affiliation: University of Melbourne, Department of Psychiatry, Austin Health, Heidelberg, Victoria, Australia.
King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, United Kingdom.
King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, United Kingdom; St Andrew's Academic Centre, King's College London, Northampton, United Kingdom.
King's College London, Institute of Psychiatry, Department of Developmental Psychiatry, London, United Kingdom.
Issue Date: 6-Mar-2014
Citation: Plos One 2014; 9(3): e91109
Abstract: Sexual dimorphism in human brain structure is well recognised, but less is known about gender differences in white matter microstructure. We used diffusion tensor imaging to explore gender differences in fractional anisotropy (FA), an index of microstructural integrity. We previously found increased FA in the corpus callosum in women, and increased FA in the cerebellum and left superior longitudinal fasciculus (SLF) in men, using a whole-brain voxel-based analysis.A whole-brain tract-based spatial statistics analysis of 120 matched subjects from the previous analysis, and 134 new subjects (147 men and 107 women in total) using a 1.5T scanner, with division into tract-based regions of interest.Men had higher FA in the superior cerebellar peduncles and women had higher FA in corpus callosum in both the first and second samples. The higher SLF FA in men was not found in either sample.We confirmed our previous, controversial finding of increased FA in the corpus callosum in women, and increased cerebellar FA in men. The corpus callosum FA difference offers some explanation for the otherwise puzzling advantage in inter-callosal transfer time shown in women; the cerebellar FA difference may be associated with the developmental motor advantage shown in men.
Internal ID Number: 24603769
URI: http://ahro.austin.org.au/austinjspui/handle/1/12112
DOI: 10.1371/journal.pone.0091109
URL: http://www.ncbi.nlm.nih.gov/pubmed/24603769
Type: Journal Article
Subjects: Adolescent
Adult
Anisotropy
Demography
Female
Humans
Male
Middle Aged
Pyramidal Tracts.pathology
Sex Characteristics
Statistics as Topic
White Matter.pathology
Young Adult
Appears in Collections:Journal articles

Files in This Item:
There are no files associated with this item.


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.