Please use this identifier to cite or link to this item: http://ahro.austin.org.au/austinjspui/handle/1/10979
Title: Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate.
Authors: Seeman, Ego;Delmas, Pierre D;Hanley, David A;Sellmeyer, Deborah;Cheung, Angela M;Shane, Elizabeth;Kearns, Ann;Thomas, Thierry;Boyd, Steven K;Boutroy, Stephanie;Bogado, Cesar;Majumdar, Sharmila;Fan, Michelle;Libanati, Cesar;Zanchetta, Jose
Affiliation: Austin Health, University of Melbourne, Melbourne, Australia
egos@unimelb.edu.au
Issue Date: 1-Aug-2010
Citation: Journal of Bone and Mineral Research : the Official Journal of the American Society For Bone and Mineral Research; 25(8): 1886-94
Abstract: The intensity of bone remodeling is a critical determinant of the decay of cortical and trabecular microstructure after menopause. Denosumab suppresses remodeling more than alendronate, leading to greater gains in areal bone mineral density (aBMD). These greater gains may reflect differing effects of each drug on bone microarchitecture and strength. In a phase 2 double-blind pilot study, 247 postmenopausal women were randomized to denosumab (60 mg subcutaneous 6 monthly), alendronate (70 mg oral weekly), or placebo for 12 months. All received daily calcium and vitamin D. Morphologic changes were assessed using high-resolution peripheral quantitative computed tomography (HR-pQCT) at the distal radius and distal tibia and QCT at the distal radius. Denosumab decreased serum C-telopeptide more rapidly and markedly than alendronate. In the placebo arm, total, cortical, and trabecular BMD and cortical thickness decreased (-2.1% to -0.8%) at the distal radius after 12 months. Alendronate prevented the decline (-0.6% to 2.4%, p = .051 to <.001 versus placebo), whereas denosumab prevented the decline or improved these variables (0.3% to 3.4%, p < .001 versus placebo). Changes in total and cortical BMD were greater with denosumab than with alendronate (p < or = .024). Similar changes in these parameters were observed at the tibia. The polar moment of inertia also increased more in the denosumab than alendronate or placebo groups (p < .001). Adverse events did not differ by group. These data suggest that structural decay owing to bone remodeling and progression of bone fragility may be prevented more effectively with denosumab.
Internal ID Number: 20222106
URI: http://ahro.austin.org.au/austinjspui/handle/1/10979
DOI: 10.1002/jbmr.81
URL: http://www.ncbi.nlm.nih.gov/pubmed/20222106
Type: Journal Article
Subjects: Aged
Alendronate.administration & dosage.adverse effects.pharmacology
Antibodies, Monoclonal.administration & dosage.adverse effects.pharmacology
Antibodies, Monoclonal, Humanized
Biological Markers.metabolism
Bone Density.drug effects
Bone Density Conservation Agents.administration & dosage.adverse effects.pharmacology
Bone Remodeling.drug effects
Bone and Bones.drug effects.pathology.radiography
Demography
Female
Humans
Middle Aged
RANK Ligand.administration & dosage.adverse effects.pharmacology
Tomography, X-Ray Computed
Appears in Collections:Journal articles

Files in This Item:
There are no files associated with this item.


Items in AHRO are protected by copyright, with all rights reserved, unless otherwise indicated.