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Abstract

Introduction: Alzheimer’s disease (AD) is a growing socioeconomic problem worldwide. Early diagnosis and
prevention of this devastating disease have become a research priority. Consequently, the identification of clinically
significant and sensitive blood biomarkers for its early detection is very important. Apolipoprotein E (APOE) is a
well-known and established genetic risk factor for late-onset AD; however, the impact of the protein level on AD risk is
unclear. We assessed the utility of plasma ApoE protein as a potential biomarker of AD in the large, well-characterised
Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) cohort.

Methods: Total plasma ApoE levels were measured at 18-month follow-up using a commercial bead-based
enzyme-linked immunosorbent assay: the Luminex xMAP human apolipoprotein kit. ApoE levels were then
analysed between clinical classifications (healthy controls, mild cognitive impairment (MCI) and AD) and
correlated with the data available from the AIBL cohort, including but not limited to APOE genotype and
cerebral amyloid burden.

Results: A significant decrease in ApoE levels was found in the AD group compared with the healthy controls.
These results validate previously published ApoE protein levels at baseline obtained using different methodology.
ApoE protein levels were also significantly affected, depending on APOE genotypes, with ε2/ε2 having the highest
protein levels and ε4/ε4 having the lowest. Plasma ApoE levels were significantly negatively correlated with
cerebral amyloid burden as measured by neuroimaging.

Conclusions: ApoE is decreased in individuals with AD compared with healthy controls at 18-month follow-up,
and this trend is consistent with our results published at baseline. The influence of APOE genotype and sex on the
protein levels are also explored. It is clear that ApoE is a strong player in the aetiology of this disease at both the
protein and genetic levels.
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Introduction
Current research in the area of Alzheimer’s disease (AD)
indicates an urgent need for the discovery and validation
of sensitive and specific protein biomarkers for the early
detection and treatment of this devastating disease [1,2].
Pathological changes in brain amyloid-β (Aβ) protein
deposits visualised by neuroimaging are captured up to
15 years prior to the manifestation of clinical symptoms
[3-5]. With definitive diagnosis possible only post-mortem,
it is critical that more inexpensive and widely accessible
strategies be developed to capture these changes early.
Blood-based biomarkers are currently being mined for
utility in detecting preclinical AD, where the goal is to
develop a screening tool in the form of a routine blood
test for early diagnosis.
Apolipoprotein E (ApoE) is a well-defined genetic

risk factor for late-onset AD [6]. The human APOE
gene has three polymorphic alleles—namely ε2, ε3 and
ε4 [7]—where an individual acquires two alleles result-
ing in six different phenotypes: ε2/ε2, ε2/ε3, ε3/ε3, ε2/
ε4, ε3/ε4 and ε4/ε4. Importantly, approximately 50%
of AD patients carry the ε4 allele (compared with 14%
in the general population), with the majority being het-
erozygotes (ε3/ε4 [8,9]). The APOE-ε4 allele has been
implicated in many AD pathological pathways. Further-
more, the number of inherited ε4 alleles is associated
with both increased disease risk and decreased average
age of onset compared with inheritance of the ε2 or ε3
alleles [8].
Biologically, the ApoE protein is known to influence

lipid homeostasis by regulating lipid transport, such as
cholesterol, in an isoform-dependent manner [10-12]. The
differences between the three ApoE isoforms are based on
two amino acids that affect its structure and hence the
interaction and binding of the protein with various
lipids and Aβ [13-15]. Histologically, ApoE and Aβ can
co-localise in the brain, and therefore their complemen-
tary roles have been studied extensively [16,17]. These
studies have led to the association of the ApoE4 protein
with lower Aβ1–42 and higher tau levels observed in
cerebrospinal fluid, increased brain atrophy and increased
neocortical amyloid burden [7,18-20]. In contrast, ApoE2
is considered to be more cognitively protective than
ApoE4; however, this is seemingly independent of actual
Aβ pathology in the brain [13,21].
Whilst the APOE gene is considered one of the stron-

gest risk factors for late-onset AD, the mechanisms and
influence of actual plasma ApoE levels on the patho-
physiology of AD remain unclear and require further
elucidation. Therefore, we measured ApoE protein levels
in plasma to further assess and determine the diagnostic
value of ApoE as an AD blood biomarker. Given the
prior knowledge of ApoE involvement in Aβ metabolism
mentioned above, we also evaluated the association of
plasma ApoE on neocortical Aβ burden as measured by
positron emission tomography (PET).
Previously, we reported on the baseline ApoE data de-

rived from the Australian Imaging, Biomarkers and
Lifestyle Study of Ageing (AIBL) and showed a signifi-
cant decrease in ApoE protein levels in the AD group
compared with the cognitively ‘normal’ controls [22]. In
the present study, we quantified ApoE data in the same
subjects after 18 months of follow-up by utilising a
more advanced enzyme-linked immunosorbent assay
technology. This study not only validates our data in a
time-dependent manner, within the same cohort, but
also illustrates reproducibility with a different experi-
mental method.

Methods
The AIBL cohort
The cohort recruitment process, including neuropsycho-
logical, lifestyle and mood assessments, have been de-
scribed in detail previously [23]. In brief, in the AIBL
study, researchers recruited a total of 1,166 participants
over the age of 60 years at baseline, of whom 54 were
excluded because of comorbid disorders or consent
withdrawal. Using the National Institute of Neurological
and Communicative Disorders and Stroke/Alzheimer’s
Disease and Related Disorders Association international
criteria for AD diagnosis [24], a clinical review panel
determined disease classifications at each assessment
time point to ensure accurate and consistent diagnoses
amongst the participants. According to these diagnostic
criteria, participants were classified into one of three
groups; AD, mild cognitive impairment (MCI) or healthy
controls (HC). At baseline, there were a total of 768 HC,
133 subjects with MCI and 211 subjects with AD.
The AIBL study is a prospective, longitudinal study,

following participants at 18-month intervals. In this
report, we describe findings for 954 individuals who
completed the full study assessment and corresponding
blood sample collection at both baseline and 18-month
follow-up. Of these 954 participants, 689 were classified
as HC, 78 as MCI and 187 as AD.
The institutional ethics committees of Austin Health,

St. Vincent’s Health, Hollywood Private Hospital and
Edith Cowan University granted ethical approval for the
AIBL study. All volunteers gave their written informed
consent prior to participating in the study.

Sample collection and APOE genotyping
Plasma was isolated from whole blood and collected in
standard ethylenediaminetetraacetic acid tubes with
prostaglandin E1 (33.3 ng/ml; Sapphire Biosciences,
Waterloo, Australia) added. Upon completion of blood
fractionation, samples were aliquoted and immediately
stored in liquid nitrogen until required for analysis.
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DNA was isolated from whole blood using a QIAamp
DNA Blood Midi Kit (Qiagen, Chadstone Centre,
Australia) according to the manufacturer’s protocol,
and APOE genotype was determined through either
PCR amplification and restriction enzyme digestions, as
previously described [25], or through TaqMan genotyp-
ing assays (Life Technologies, Mulgrave, Australia) for
rs7412 (Assay ID: C____904973_10) and rs429358
(Assay ID: C_3084793_20). For TaqMan assays, PCRs
and real-time fluorescence measurements were carried
out on a ViiA 7 real-time PCR system (Applied Biosys-
tems, Mulgrave, Australia) using the TaqMan GTXpress
Master Mix (Life Technologies) methodology per the
manufacturer’s instructions.

Total apolipoprotein E assay
Total plasma ApoE levels were measured using a
commercial Luminex xMAP Human apolipoprotein kit
(EMD Millipore, Billerica, MA, USA), a bead-based
assay. This kit uses capture antibodies on the surface of
fluorescently coated beads. Each microsphere is conju-
gated with a specific capture antibody—in this case, a
specific human anti-ApoE antibody. Briefly, the plasma
samples were thawed on ice, centrifuged for 10 minutes
at 12,000 × g and diluted 10,000-fold using the supplied
assay buffer diluents. Quality control and human ApoE
calibrators were reconstituted in deionized water to
give working solutions. Antibody-immobilised beads
were prepared separately. The beads were vortexed for
1 minute and then incubated in a sonicating bath for 8
to 10 minutes. The beads were diluted using the pro-
vided diluents, and the final solution was sonicated
and vortexed again just prior to loading onto the plate.
Finally, all reagents were loaded onto the provided
filter plate in the appropriate proportions as per the kit
instructions, incubated for 1 hour and then vacuum-
drained and washed. The detection antibodies and
streptavidin-phycoerythrin were added for 30 minutes
and vacuumed and washed in the same manner. Plates
were read on the Bio-Plex 200 multiplexing instrument
(Bio-Rad Laboratories, Gladesville, Australia). The assay
sensitivity for ApoE was 0.10 ng/ml, and the intra-assay
and inter-assay precisions were 5% and 22%, respectively.

Brain imaging in a subset of the AIBL cohort
A subset of the AIBL cohort (n = 287) underwent carbon-
11-labeled Pittsburgh Compound B positron emission
tomography (11C-PiB-PET) imaging at baseline to meas-
ure cerebral amyloid load as previously described [26].
PET standardised uptake value (SUV) data were summed
and normalised to the cerebellar cortex SUV to form the
region to cerebellar ratio (SUVR). Of the total 954 partici-
pants reported on here, 217 underwent PiB-PET imaging
at 18-month follow-up.
Statistical analysis
Differences in demographics across clinical categories
were assessed using one-way analysis of variance
(ANOVA) for continuous data (age) and χ2 tests for
categorised data (sex and APOE-ε4 carriage). Differ-
ences in ApoE levels between clinical classifications
were assessed using ANOVA. Tukey’s honestly signifi-
cant difference (HSD) post hoc adjustment was applied
to individual classification differences.
General linear models were used to assess correla-

tions between SUVR and ApoE levels, and correlation
coefficients (β) and ApoE level specific P-values are re-
ported. Receiver operating characteristic curves for
predicting PiB status were calculated from predictions
given by tenfold cross-validated random forest models,
which have been shown previously [27] to have efficacy
in creating blood-based predictors for PiB status. All
statistical analyses were conducted using R software
version 2.15.1 [28].

Results
Demographic data for the 18-month follow-up, includ-
ing number of participants (both female and male) in
each of the clinical categories, APOE-ε4 status, mean
age and AIBL cohort are presented in Table 1. The aver-
age age was significantly higher in individuals with MCI
(77.97 years) and AD (80.32 years) than in the HC cat-
egory (73.51 years) (P < 0.001, one-way ANOVA). The
percentage of APOE-ε4-positive individuals was signifi-
cantly higher in the AD (68.4%) and MCI (41%) groups
than in the HC group (26.9%). The number of female
participants was generally higher than males in each of
the clinical classification categories.
ApoE levels were significantly different across the

diagnostic classification categories (P = 0.002) (Figure 1).
When controlling for age, sex and APOE-ε4 status,
ApoE levels remained significantly different between
clinical classifications (p < 0.001). Post-hoc analysis
(Tukey’s HSD) revealed that lower ApoE levels were
seen in individuals with AD (6.20 mg/dl) when com-
pared with HC (6.97 mg/dl; p = 0.005). Total ApoE
levels were significantly decreased in APOE-ε4 carriers
(5.59 mg/dl) compared with non-carriers (7.41 mg/dl;
p < 0.001; Table 2) and remained so after correction for
known pre-disposing factors, age and sex. This relation-
ship also remained strong when the participants were
stratified by clinical classification (with or without
correction for age and sex) as well as stratification by
sex (with or without correction for age); refer to Table 2
and Figure 2. Further, males had lower total ApoE levels
(6.12 mg/dl) compared with females (7.21 mg/dl; p = 0.013)
irrespective of clinical classification. ApoE levels were
seen to have significant (p < 0.05) differences across ApoE
genotype classifications by one-way ANOVA with Tukey’s



Table 1 Demographic characteristics, including APOE-ε4 frequency, of the study groupsa

Categories HC MCI AD P-value

Count, n 689 78 187

Age, yr 73.51 ± 6.78 77.97 ± 7.58 80.32 ± 7.79 <0.001 (one-way ANOVA)

Sex, M/F 285/404 37/41 76/111 0.556 (χ2 test)

APOE-ε4-positive, % 26.9 41 68.4 <0.001 (χ2 test)
aAD, Alzheimer’s disease; APOE, Apolipoprotein E; HC, Healthy controls; MCI, Mild cognitive impairment. Values are mean ± standard deviation or ratio (%).
Statistical analysis of age (in years) and sex of the participants was carried out using one-way analysis of variance (ANOVA), and APOE-ε4 genotype frequency was
performed using the χ2 test.
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HSD post-hoc adjustment, refer to Figure 3 and Table 3.
The only exceptions were between ε2/ε2 and ε2/ε3; ε3/ε4
and ε4/ε4 as well as comparisons with ε2/ε4.
There was a significant association between ApoE and

SUVR, with an increase in ApoE levels being associated
with a decrease in SUVR (β = −0.034, P = 0.025) (Figure 4).
Within different clinical categories, however, no correl-
ation was observed between the two groups. The rela-
tionship was still evident when we corrected for age and
sex in the model (β = −0.040, P = 0.009).
When ApoE levels were used to predict PiB-positive

and PiB-negative status based on a cutoff of 1.5 SUVR
[3], the area under the curve (AUC) was 59.83% (95%
confidence interval (CI): 51.89% to 67.77%), with a sensi-
tivity of 57.68% (95% CI: 51.76% to 63.60%) and a speci-
ficity 56.76% (95% CI: 50.61% to 62.91%). When APOE
genotype, age, sex and site were also added to the
prediction model, the sensitivity and specificity were
increased to 67.77% (95% CI: 66.29% to 69.25%) and
67.04% (95% CI: 65.57% to 68.53%), respectively, with
an AUC of 79.12% (95% CI: 78.14% to 80.10%). With re-
gard to neocortical burden, a model for APOE genotype,
Figure 1 Apolipoprotein E protein levels across all clinical classificatio
standard deviation for absolute apolipoprotein E (ApoE) levels (mg/dl) acro
and Lifestyle Study of Ageing (AIBL) cohort participants at the 18-month time
P = 0.001 (adjusted for age, sex and APOE-ε4 genotype), followed by post
versus Alzheimer’s disease (AD), P = 0.005; HC versus mild cognitive impai
age, sex and site alone obtained sensitivity of 69.74%
(95% CI: 63.27% to 76.21%) and specificity of 67.76%
(95% CI: 62.34% to 73.18%), respectively, with an AUC
of 76.29% (95% CI: 69.54% to 83.05%).

Discussion
In this study, we expanded the analysis of ApoE in a very
well-characterised and well-described cohort, AIBL [23].
Plasma ApoE levels were measured at the 18-month
time point. The multitude of data available for each of
the AIBL participants allowed us to explore the relation-
ship between ApoE protein levels and other related phe-
notypes to further reveal the pathways responsible for
the onset of AD. Whilst APOE genotype plays a signifi-
cant role in determining the risk of an individual devel-
oping AD, the role of ApoE at the protein level is not
yet fully understood, and reported results have varied in
the literature thus far.
The present study completely corroborates our previ-

ous findings that ApoE levels are significantly decreased
in the MCI and AD groups compared with the HC [22].
These results remained significant even when we controlled
ns in the AIBL cohort at 18 months. Data are presented as mean ±
ss clinical classification categories of the Australian Imaging, Biomarkers
point. One-way analysis of variance overall P = 0.002, overall adjusted
hoc Tukey’s honestly significant difference test: healthy controls (HC)
rment (MCI), P = 0.997; and MCI versus AD, P = 0.064.



Table 2 Comparison of apolipoprotein E levels among different clinical classification and sex categories

Categories Total Non-ε4 carriers ε4 carriers P crudea P adja

Total ApoE levels (mg/dl) 6.75 ± 3.00 7.41 ± 3.11 5.59 ± 2.40 <0.001 <0.001b

Total ApoE levels (HC) 6.97 ± 3.02 7.45 ± 3.10 5.65 ± 2.37 <0.001 <0.001b

Total ApoE levels (MCI) 6.17 ± 3.02 6.96 ± 3.37 5.02 ± 1.97 0.005 0.005b

Total ApoE levels (AD) 6.20 ± 2.81 7.39 ± 3.05 5.65 ± 2.53 <0.001 <0.001b

Total ApoE levels (female) 7.21 ± 3.10 7.91 ± 3.18 5.94 ± 2.87 <0.001 <0.001c

Total ApoE levels (male) 6.12 ± 2.74 6.70 ± 2.49 5.12 ± 2.18 <0.001 <0.001c

AD, Alzheimer’s disease; HC, Healthy controls; MCI, Mild cognitive impairment, aComparison between apolipoprotein E (APOE)-ε4 carriers and non-ε4 carriers.
bP-values adjusted after controlling for age and sex. cP-values adjusted after controlling for age.
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for age, sex and APOE-ε4 status. As the AIBL study is a
longitudinal prospective study, these 18-month data
validate the published baseline data for the same partici-
pants and are consistent with other studies [22,29-31].
Further, this report illustrates that ApoE levels are
significantly decreased in APOE-ε4 carriers, even when
stratified by clinical classification or sex. This was also
consistent with our previously published data on base-
line plasma ApoE [22]. These significant differences
observed between the sexes are also supported by
recent publications [31,32] in which authors have
suggested that the APOE-ε4 link to AD is stronger in
women. Those who are APOE-ε4 carriers have signifi-
cantly lower ApoE central nervous system (CNS) and
plasma ApoE levels, which may explain their propensity
to develop AD [22,33,34]. In this study, ApoE protein
plasma levels are also defined by specific genotypes,
with ε2/ε2 participants having the highest ApoE levels
and ε4/ε4 participants having the lowest (Figure 3).
Figure 2 Absolute apolipoprotein E levels across clinical categories. D
(ApoE) levels stratified by sex and APOE-ε4 genotype in the Australian Imaging
the 18-month time point. One-way analysis of variance followed by post hoc T
controls (HC): females, P < 0.001 for ε4 (F+) versus non-ε4 (F−); males, P <
(MCI): females, P = 0.040 for ε4 versus non-ε4; males, P = 0.539 for ε4 versu
non-ε4; males, P = 0.604 for ε4 versus non-ε4.
A decrease in the amount of available plasma ApoE
among ε4 allele carriers could have significant implications
in the disease process. Given the involvement of ApoE in
Aβ clearance and lipid transport, this seems mechanistic-
ally plausible. APOE-ε4 carriers have been shown to have
increased amyloid burden, and this may be due to de-
creased clearance from the brain resulting from the
limited ApoE available to bind Aβ [17,19]. Looking more
closely at the literature regarding brain ApoE levels, this
concept has also been demonstrated in targeted replace-
ment mice, in which genotype clearly affected ApoE levels
specifically in the CNS (with ε4/ε4 mice having the least
brain ApoE [34]). Also, reduced ApoE plasma and CNS
levels correlated with the development of AD, suggesting
a direct consequence of having less ApoE. The ApoE4
isoform is reportedly less stable and may be preferentially
degraded compared with ApoE3 in astrocytes, providing a
possible biological explanation for the decrease in protein
availability in this particular genotype [34].
ata are presented as means ± standard deviations of apolipoprotein
, Biomarkers and Lifestyle Study of Ageing (AIBL) cohort participants at
ukey’s honestly significant difference test was carried out. Healthy
0.001 for ε4 (M+) versus non-ε4 (M−). Mild cognitive impairment
s non-ε4. Alzheimer’s disease (AD): females, P < 0.001 for ε4 versus



Figure 3 Apolipoprotein E protein levels across all individual
APOE genotypes. Data are presented as mean ± SD for plasma
apolipoprotein E (ApoE) protein levels (mg/dl) across all APOE genotype
combination categories in the Australian Imaging, Biomarkers and
Lifestyle Study of Ageing (AIBL) cohort participants at the 18-month
time point. One-way analysis of variance overall P < 0.001, overall
adjusted P < 0.001 (adjusted for age, sex and clinical classification).
Post hoc Tukey’s honestly significant difference test results between
genotypes are shown in Table 3.

Figure 4 Correlation between total plasma apolipoprotein E
levels (mg/dl) and cerebral amyloid burden as measured by
carbon-11-labeled Pittsburgh Compound B positron emission
tomography (PiB-PET). APOE, Apolipoprotein E; SUVR, Standardised
uptake value ratio. R2adj = 1.9%, P = 0.02.

Gupta et al. Alzheimer's Research & Therapy  (2015) 7:16 Page 6 of 9
ApoE isoforms are known to differentially transport
and regulate cholesterol levels because of their amino
acid differences, with ApoE4 preferentially binding to
low-density lipoprotein and ApoE2 or ApoE3 binding to
high-density lipoprotein [34]. Cholesterol uptake is also
in part dependent upon the ApoE isoform bound to the
lipid because ApoE4-mediated cholesterol uptake has
been shown to be lower [35,36]. It is likely, therefore,
that peripheral ApoE levels, as determined by individual
isoforms, have a direct effect on lipid transport and
cholesterol levels. APOE-ε4 carriers, having insufficient
ApoE, may have reduced distribution of cholesterol to
neurons for important functions such as membrane
maintenance, repair and synaptogenesis, which are
crucial for learning and memory [34,37,38]. With AD
subjects exhibiting lower ApoE levels in this cohort, this
may have similar implications because over 68% of the
AIBL AD group carries the APOE-ε4 allele as well.
Interestingly, researchers have used animal models to
Table 3 Comparison of apolipoprotein E levels among
different APOE genotype categories

ε2/ε2 ε2/ε3 ε3/ε3 ε2/ε4 ε3/ε4

Count, n 5 113 491 25 266

ε2/ε3 0.118

ε3/ε3 <0.001 <0.001

ε2/ε4 0.020 0.474 0.156

ε3/ε4 <0.001 <0.001 <0.001 <0.001

ε4/ε4, N = 55 <0.001 <0.001 <0.001 <0.001 0.261

P-values shown were calculated using one-way analysis of variance (ANOVA)
followed by Tukey’s honestly significant difference post hoc test. Refer
to Figure 3.
demonstrate that different ApoE isoforms also predict
varying outcomes in response to CNS injury [13]. In this
regard, ApoE deficient mice had a complete inability to
recuperate from experimentally induced head injury,
illustrating the essential role of this protein in neuronal
repair [39].
Also of potential significance in considering the

downstream effects of ApoE levels is that the choliner-
gic pathway is highly dependent upon lipid homeostasis
for the synthesis of acetylcholine [40]. Cholinergic
dysfunction is a well-documented feature of AD, where
many treatment strategies have revolved around aug-
menting levels of this particular neurotransmitter
[12,41]. The link between these two systems is lipid
maintenance, which illustrates the potential importance
of ApoE in this pathway. Because the AD group in this
study exhibited significantly lower levels of this protein,
and considering the subsequent biological implications
described here, plasma ApoE may be an important
element in a predictive biomarker panel for early
diagnosis.
The APOE-ε4 allele not only is considered a risk factor

for AD, but is now also being used as a predictor for
cognitive decline. Cognitively normal APOE-ε4 allele
carriers have been shown to exhibit an increase in amyl-
oid burden as measured by PiB-PET [42]. Additionally,
those who are cognitively healthy APOE-ε4 carriers have
exhibited structural damage and associated cognitive
decline compared with non-E4 carriers as observed by
magnetic resonance imaging (MRI) [43,44]. With a clear
reduction in ApoE protein levels associated with the
carriage of the APOE-ε4 allele, and with the utilisation
of MRI and PET neuroimaging, we are a step closer to
understanding the consequences of reduced ApoE levels.
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In terms of the relationship between ApoE protein levels
and amyloid burden in the present study, a subset of
participants who underwent PiB-PET imaging were
analysed separately with respect to plasma ApoE levels.
A significant negative correlation was found between
SUVR and ApoE levels, suggesting that lower circu-
lating ApoE levels are associated with higher amyloid
burden in the brain. Again, this supports our previous
work, which demonstrated a similar significant result
[22]. Given the relationship between ApoE isoforms
and subsequent protein levels, ApoE could perhaps
play an interchangeable role as a risk factor and/or
biomarker.
To strengthen our findings, we used ApoE levels at

the 18-month follow-up to predict neocortical Aβ bur-
den based on PiB-PET-determined SUVR. An AUC of
60% was observed for neocortical Aβ burden predicted
with ApoE protein levels alone; however, the addition of
demographic and APOE genotype information to the
model yielded an AUC of 80% (3% above that of the
demographic and APOE genotype information alone).
The modest improvement in predicting neocortical Aβ
burden with the addition of plasma ApoE levels to the
base model demonstrated a possible application for
plasma ApoE levels in a clinical setting and its import-
ance to the increased accuracy for potential population
screening protocols to identify individuals at increased
risk of developing AD.

Conclusions
The findings reported here are from the 18-month
follow-up time point of the longitudinal AIBL study.
The mean plasma ApoE levels are lower in the MCI
and AD clinical categories than in the HC participants
in the age, sex and APOE-ε4 genotype controlled data
set. The differences in mean ApoE levels observed
among the clinical categories are consistent with the
previously published baseline results from AIBL and
also reiterate that APOE-ε4 carriers have the lowest
levels of plasma ApoE levels. This study gives the
insight that lower levels of ApoE could have major im-
plications in contributing to the progression of AD as
also observed by its negative correlation with neocor-
tical amyloid burden as measured by PiB-PET. On the
basis of these consistent results derived from a large,
well-characterised cohort, ApoE has the potential to
become an important biomarker target for the early
diagnosis of AD.
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